MHB Proving Identity: $\sin^8A-\cos^8A$

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion focuses on proving the identity $\sin^8(A) - \cos^8(A)$ through various algebraic manipulations. It starts by expressing the left-hand side in terms of $\sin^2(A)$ and $\cos^2(A)$, utilizing the difference of squares formula. Participants explore factorizations and substitutions to simplify the expression, ultimately leading to the conclusion that the identity can be rewritten in terms of squares of sine and cosine. The key takeaway is the importance of reducing higher powers to squares for easier manipulation and proof. The discussion emphasizes the algebraic relationships between sine and cosine in trigonometric identities.
Silver Bolt
Messages
8
Reaction score
0
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?
 
Mathematics news on Phys.org
Silver Bolt said:
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?

$\sin^8\left({A}\right)-\cos^8\left({A}\right)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^4\left({A}\right)-\cos^4\left({A}\right)$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)+\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2+b^2 = + (a+b)^2 - 2ab$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $(1-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$

The rational is that we need to reduce the power to squares of sin and cos
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K