MHB Proving Identity: $\sin^8A-\cos^8A$

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion focuses on proving the identity $\sin^8(A) - \cos^8(A)$ through various algebraic manipulations. It starts by expressing the left-hand side in terms of $\sin^2(A)$ and $\cos^2(A)$, utilizing the difference of squares formula. Participants explore factorizations and substitutions to simplify the expression, ultimately leading to the conclusion that the identity can be rewritten in terms of squares of sine and cosine. The key takeaway is the importance of reducing higher powers to squares for easier manipulation and proof. The discussion emphasizes the algebraic relationships between sine and cosine in trigonometric identities.
Silver Bolt
Messages
8
Reaction score
0
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?
 
Mathematics news on Phys.org
Silver Bolt said:
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?

$\sin^8\left({A}\right)-\cos^8\left({A}\right)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^4\left({A}\right)-\cos^4\left({A}\right)$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)+\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2+b^2 = + (a+b)^2 - 2ab$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $(1-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$

The rational is that we need to reduce the power to squares of sin and cos
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
997
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
843
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K