Proving Identity: $\sin^8A-\cos^8A$

  • Context: MHB 
  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
SUMMARY

The expression $\sin^8(A) - \cos^8(A)$ can be factored using the identity for the difference of squares, resulting in $(\sin^4(A) + \cos^4(A))(\sin^4(A) - \cos^4(A))$. Further simplification leads to $(\sin^4(A) + \cos^4(A))(\sin^2(A) - \cos^2(A))$. The final form reveals that the expression can be rewritten as $((\sin^2(A) + \cos^2(A))^2 - 2\sin^2(A)\cos^2(A)(\sin^2(A) - \cos^2(A))$, confirming the identity through algebraic manipulation.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with algebraic identities, specifically the difference of squares
  • Knowledge of polynomial factorization
  • Basic proficiency in manipulating powers of sine and cosine functions
NEXT STEPS
  • Study the derivation of trigonometric identities, focusing on $\sin^2(A) + \cos^2(A) = 1$
  • Learn about polynomial factorization techniques, particularly for expressions involving powers
  • Explore advanced algebraic manipulation methods for simplifying trigonometric expressions
  • Investigate the applications of these identities in solving trigonometric equations
USEFUL FOR

Mathematics students, educators, and anyone interested in deepening their understanding of trigonometric identities and algebraic manipulation techniques.

Silver Bolt
Messages
8
Reaction score
0
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?
 
Mathematics news on Phys.org
Silver Bolt said:
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?

$\sin^8\left({A}\right)-\cos^8\left({A}\right)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^4\left({A}\right)-\cos^4\left({A}\right)$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)+\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2+b^2 = + (a+b)^2 - 2ab$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $(1-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$

The rational is that we need to reduce the power to squares of sin and cos
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K