Proving Identity: tan(x)/(sec(x)+1) = (sec(x)-1)/tan(x)

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The identity $\frac {\tan x} {\sec x + 1} = \frac {\sec x - 1} {\tan x}$ was successfully demonstrated by several forum members. The primary solution was provided by Prove It, while an alternate solution was presented by MarkFL. Other contributors, including anemone, soroban, and Sudharaka, also offered correct solutions. The discussion highlights various approaches to proving the trigonometric identity. Overall, the thread showcases collaborative problem-solving in mathematics.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Demonstrate the following identity:

$\displaystyle \frac {\tan x} {\sec x + 1} = \frac {\sec x - 1} {\tan x}$
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) anemone
2) Prove It
3) soroban
4) MarkFL
5) Sudharaka

Solution (from Prove It):
[math]\displaystyle \begin{align*} \frac{\tan{(x)}}{\sec{(x)} + 1} &= \frac{\tan{(x)}\left[ \sec{(x)} - 1 \right]}{\left[ \sec{(x)} + 1 \right] \left[ \sec{(x)} - 1 \right] } \\ &= \frac{\tan{(x)}\left[ \sec{(x)} - 1 \right] }{ \sec^2{(x)} - 1 } \\ &= \frac{\tan{(x)}\left[ \sec{(x)} - 1 \right] }{ \tan^2{(x)}} \\ &= \frac{\sec{(x)} - 1}{\tan{(x)}} \end{align*}[/math]

Alternate solution (from MarkFL):
Beginning with the left side of the identity, and utilizing double-angle identities for sine and cosine, we may write:

$$\frac{\tan(x)}{\sec(x)+1}\cdot\frac{\cos(x)}{\cos(x)}=\frac{\sin(x)}{1+\cos(x)}=\frac{\sin\left(2 \cdot\frac{x}{2} \right)}{1+\cos\left(2\cdot\frac{x}{2} \right)}=$$

$$\frac{2\sin\left(\frac{x}{2} \right)\cos\left(\frac{x}{2} \right)}{2\cos^2\left(\frac{x}{2} \right)}=\frac{2\sin\left(\frac{x}{2} \right)}{2\cos\left(\frac{x}{2} \right)}\cdot\frac{\sin\left(\frac{x}{2} \right)}{\sin\left(\frac{x}{2} \right)}=$$

$$\frac{2\sin^2\left(\frac{x}{2} \right)}{2\sin\left(\frac{x}{2} \right)\cos\left(\frac{x}{2} \right)}=\frac{1-\cos(x)}{\sin(x)}\cdot\frac{\sec(x)}{\sec(x)}= \frac{\sec(x)-1}{\tan(x)}$$
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K