Beginning with the left side of the identity, and utilizing double-angle identities for sine and cosine, we may write:
$$\frac{\tan(x)}{\sec(x)+1}\cdot\frac{\cos(x)}{\cos(x)}=\frac{\sin(x)}{1+\cos(x)}=\frac{\sin\left(2 \cdot\frac{x}{2} \right)}{1+\cos\left(2\cdot\frac{x}{2} \right)}=$$
$$\frac{2\sin\left(\frac{x}{2} \right)\cos\left(\frac{x}{2} \right)}{2\cos^2\left(\frac{x}{2} \right)}=\frac{2\sin\left(\frac{x}{2} \right)}{2\cos\left(\frac{x}{2} \right)}\cdot\frac{\sin\left(\frac{x}{2} \right)}{\sin\left(\frac{x}{2} \right)}=$$
$$\frac{2\sin^2\left(\frac{x}{2} \right)}{2\sin\left(\frac{x}{2} \right)\cos\left(\frac{x}{2} \right)}=\frac{1-\cos(x)}{\sin(x)}\cdot\frac{\sec(x)}{\sec(x)}= \frac{\sec(x)-1}{\tan(x)}$$