Integrate [cosec(30°+x)-cosec(60°+x)] dx in terms of tan x

In summary, the integral of the expression [cosec(30°+x) - cosec(60°+x)] dx can be evaluated by expressing the cosecant functions in terms of sine and manipulating the resulting trigonometric identities. After simplification, the integral can be rewritten in terms of tan x, allowing for the application of standard integration techniques to find the final result.
  • #1
Aurelius120
251
24
Homework Statement
Evaluate the integral:
$$\int\frac{\left(1-\frac{1}{\sqrt 3}\right)(\cos x-\sin x)}{1+\frac{2}{\sqrt 3}(\sin 2x)}dx$$
Relevant Equations
$$\sin C+\sin D=2\sin\left(\frac{C+D}{2}\right)\cos \left(\frac{C-D}{2}\right)$$
$$\int \csc(x) dx=\ln(\csc(x)-\cot(x))$$
20240203_023535.jpg

I proceeded as follows
$$\int\frac{2(\sqrt3-1)(cosx-sinx)}{2(\sqrt3+2sin2x)}dx$$
$$\int\frac{(cos(\pi/6)-sin(\pi/6))(cosx-sinx)}{(sin(\pi/3)+sin2x)}dx$$
$$\frac{1}{2}\int\frac{cos(\pi/6-x)-sin(\pi/6+x)}{sin(\pi/6+x)cos(\pi/6-x)}dx$$
$$\frac{1}{2}\int cosec(\pi/6+x)-sec(\pi/6-x)dx$$
Which leads to the integral in the question:

$$\frac{1}{2}\int\left[\csc\left(\frac{\pi}{6}+x\right)-\csc\left(\frac{\pi}{3}+x\right)\right]dx$$
Now the correct answer is:$$\frac{1}{2}\log\left|\frac{tan(\pi/12+x/2)}{tan(\pi/6+x/2)}\right|$$
20240203_025340.jpg

How to reach the correct answer from the obtained integral?
 
Last edited:
Physics news on Phys.org
  • #2
From your effort it seems that
[tex]\int csc (x+\alpha)dx =\log |\tan(\frac{x+\alpha}{2})|+C[/tex]
or by transformation of integral variable
[tex]\int csc\ x dx =\log |\tan(\frac{x}{2})|+C[/tex]
Have you investigated it by differentiating the both sides?
 
Last edited:
  • #3
anuttarasammyak said:
From your effort it seems that
[tex]\int csc (x+\alpha)dx =\log |\tan(\frac{x+\alpha}{2})|+C[/tex]
or by transformation of integral variable
[tex]\int csc\ x dx =\log |\tan(\frac{x}{2})|+C[/tex]
Have you investigated it by differentiating the both sides?
Yes I tried by I cannot reach why

Aurelius120 said:
$$\frac{1}{2}\int\left[\csc\left(\frac{\pi}{6}+x\right)-\csc\left(\frac{\pi}{3}+x\right)\right]dx$$
$$=\frac{1}{2}\ln\left[\frac{\csc(\pi/6+x)-cot(\pi/6+x)}{\csc(\pi/3+x)-\cot(\pi/3+x)}\right]+C$$ is equal to the given answer
 
  • #4
With a=x/2,[tex]\frac{1}{\sin x}-\frac{\cos x}{\sin x}=\frac{1- \cos 2a}{\sin 2a}=\frac{1-\cos^2 a+\sin^2 a}{2\sin a \cos a}=\tan a[/tex]
 
Last edited:
  • Like
Likes Aurelius120

Similar threads

Back
Top