Albert1
- 1,221
- 0
given:$a>b>c>0$
prove:$a^{2a}b^{2b}c^{2c}>a^{b+c}b^{c+a}c^{a+b}$
prove:$a^{2a}b^{2b}c^{2c}>a^{b+c}b^{c+a}c^{a+b}$
Albert said:given:$a>b>c>0$
prove:$a^{2a}b^{2b}c^{2c}>a^{b+c}b^{c+a}c^{a+b}$
very good ,you got it !Euge said:Dividing both sides of the inequality by the expression on the right gives an equivalent inequality
$\displaystyle \left(\frac{a}{b}\right)^{a-b} \left(\frac{b}{c}\right)^{b-c} \left(\frac{a}{c}\right)^{a-c} > 1$,
which holds since the bases $\frac{a}{b}, \frac{b}{c}, \frac{a}{c}$ are all greater than 1 and the exponents $a-b, b-c, a-c$ are all positive.