MHB Proving Inequality: $\frac{1}{ab+bc+ca}\geq\frac{27}{2(a+b+c)^2}$

  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion centers on proving the inequality $\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$ for positive variables a, b, and c. Participants suggest applying the Cauchy-Schwarz and Hölder's inequalities to derive the necessary conditions for the proof. The approach involves manipulating the expressions to show that $(a+b+c)\left(\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}\right)^2 \geq 27$. The discussion also touches on using convexity and other inequalities to support the argument. Ultimately, the goal is to establish the validity of the original inequality through these mathematical principles.
solakis1
Messages
407
Reaction score
0
Prove:

$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$

where a,b,c are positives
 
Mathematics news on Phys.org
solakis said:
Prove:

$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$

where a,b,c are positives
[sp] you may use the CAUCHY- SCHWARZ inequality[/sp]
 
My attempt:

Applying the Cauchy-Schwarz inequality yields:

\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \geq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\]

From the fact, that the root-mean-square is always greater than or equal to the harmonic mean, I get:
\[\frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2} \geq \frac{3^3}{(a+b+c)^2}\]
- and
\[\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2} +\frac{1}{(a+c)^2} \geq \frac{3^3}{2^2(a+b+c)^2}\]

Thus,

\[A^2 \geq \frac{3^6}{2^2(a+b+c)^4}\]

- or

\[A = \frac{1}{b(a+b)} +\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq \frac{27}{2(a+b+c)^2}\]
 
lfdahl said:
My attempt:

Applying the Cauchy-Schwarz inequality yields:

\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \geq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\]

From the fact, that the root-mean-square is always greater than or equal to the harmonic mean, I get:
\[\frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2} \geq \frac{3^3}{(a+b+c)^2}\]
- and
\[\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2} +\frac{1}{(a+c)^2} \geq \frac{3^3}{2^2(a+b+c)^2}\]
Thus,

\[A^2 \geq \frac{3^6}{2^2(a+b+c)^4}\]

- or

\[A = \frac{1}{b(a+b)} +\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq \frac{27}{2(a+b+c)^2}\]

[sp]Should not the inequality be the other way round,i.e\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \leq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\][/sp]
 
solakis said:
[sp]Should not the inequality be the other way round,i.e\[A^2 = \left ( \frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \right )^2 \leq \left ( \frac{1}{a^2}+\frac{1}{b^2} +\frac{1}{c^2}\right )\left ( \frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2} \right )\][/sp]

You´re absolutely right! It´s my mistake. Thankyou for pointing out the error.
 
solakis said:
Prove:

$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$

where a,b,c are positives
[sp]Following the hint, apply the Cauchy-Schwarz inequality to the vectors $\bigl(\sqrt{a+b},\sqrt{b+c},\sqrt{c+a}\bigr)$ and $\bigl(\frac1{\sqrt{b(a+b)}},\frac1{\sqrt{c(b+c)}},\frac1{\sqrt{a(c+a)}}\bigr)$. That gives $$\left(\frac1{\sqrt b} + \dfrac1{\sqrt c} + \dfrac1{\sqrt a}\right)^2 \leqslant 2(a+b+c)\left(\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\right).$$ The required result will follow if we can show that $$27 \leqslant (a+b+c)\left(\frac1{\sqrt a} + \dfrac1{\sqrt b} + \dfrac1{\sqrt c}\right)^2.$$ To do that, I need to use Hölder's inequality, which (applied to vectors in 3-dimensional space, with all coordinates positive) says that if $\mathbf{x} = (x_1,x_2,x_3)$, $\mathbf{y} = (y_1,y_2,y_3)$ and $\frac1p + \frac1q = 1$, then $$x_1y_1 + x_2y_2 + x_3y_3 \leqslant (x_1^p+x_2^p+x_3^p)^{1/p} (y_1^q+y_2^q+y_3^q)^{1/q}.$$ With $p=3$, $q=3/2$, $\mathbf{x} = (a^{1/3},b^{1/3},c^{1/3})$ and $\mathbf{y} = (a^{-1/3},b^{-1/3},c^{-1/3})$, that becomes $$3 \leqslant (a+b+c)^{1/3}\left(\frac1{\sqrt a} + \dfrac1{\sqrt b} + \dfrac1{\sqrt c}\right)^{2/3}.$$ After cubing both sides, that gives the result.[/sp]
 
a different take would be to look at this in terms of convexity.
$\mu :=\frac{a+b+c}{3}$
the inequality is equivalent to proving
$\frac{1}{2\mu^2} = \frac{1}{\mu(\mu + \mu)} \leq \frac{1}{3}\Big(\frac{1}{b(a+b)} + \frac{1}{c(b+c)} + \frac{1}{a(c+a)}\Big)$ if we consider the function $f: \mathbb R^3 \mapsto \mathbb R$ given by
$f\big(\mathbf x\big) = \frac{1}{x_2(x_1 + x_2)}$

we can examine its Hessian
$\mathbf H =\left[\begin{matrix}\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & 0\\\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{2}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} + \frac{2}{x_{2}^{3} \left(x_{1} + x_{2}\right)} & 0\\0 & 0 & 0\end{matrix}\right]$

and e.g. apply Sylvester's Determinant Criterion to confirm that $f$ is convex so long as each $x_i \gt 0$, i.e.

$\det\big(\mathbf H_{1:1}\big) = \frac{2}{x_{2} (x_{1} + x_{2})^{3}} \gt 0$ since each component is positive

$\det\big(\mathbf H_{2:2}\big) = \frac{3}{x_2^4(x_1 + x_2)^4}$
https://www.wolframalpha.com/input/?i=hessian+of+1/(x_2*(x_1+x_2))+

$\det\big(\mathbf H_{3:3}\big) = \det\big(\mathbf H\big) = 0$
because there is a column of all zeros

now, selecting:
$\mathbf x := \left[\begin{matrix} a \\ b \\ c\end{matrix}\right] $
and using cyclic permutation matrix

$\mathbf P = \left[\begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix}\right] $

noting that
$\mathbf P^0 + \mathbf P^1 + \mathbf P^2 = \left[\begin{matrix}1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1\end{matrix}\right]$

we get
$\frac{1}{\mu(\mu + \mu)}= f\Big(\frac{1}{3}\big(\mathbf P^0 + \mathbf P^1+\mathbf P^2\big)\mathbf x\Big) = f\Big(\frac{1}{3}\big(\mathbf P^0\mathbf x + \mathbf P^1\mathbf x +\mathbf P^2\mathbf x\big)\Big)$
$ \leq \frac{1}{3}\Big(f\big(\mathbf P^0\mathbf x\big) + f\big(\mathbf P^1\mathbf x\big)+ f\big(\mathbf P^2\mathbf x\big) \Big) = \frac{1}{3}\Big(\frac{1}{b(a+b)}+ \frac{1}{a(c+a)} + \frac{1}{c(b+c)}\Big) = \frac{1}{3}\Big(\frac{1}{b(a+b)} + \frac{1}{c(b+c)} + \frac{1}{a(c+a)}\Big)$

by Jensen's Inequality technical items:
i.) the components of $\mathbf H$ are rational functions so I take for granted that they vary continuously with $\mathbf x$
ii.) Sylvester's Determinant criterion might seem 'wrong' here since it technically applies when all determinants are positive and our final one is zero-- but since the first 2 leading minors are positive, it applies to that 2x2 principal submatrix and implies that is positive definite e.g. it implies the following Cholesky factorization with blocked structure showing positive semi-definiteness for $\mathbf H$

$\mathbf H =\left[\begin{matrix}\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & 0\\\frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{1}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} & \frac{2}{x_{2} \left(x_{1} + x_{2}\right)^{3}} + \frac{2}{x_{2}^{2} \left(x_{1} + x_{2}\right)^{2}} + \frac{2}{x_{2}^{3} \left(x_{1} + x_{2}\right)} & 0\\0 & 0 & 0\end{matrix}\right]= \left[\begin{matrix} \mathbf {LL}^T & 0 \\ 0 & 0 \end{matrix}\right] = \left[\begin{matrix} \mathbf {L} & 0 \\ 0 & 0 \end{matrix}\right]\left[\begin{matrix} \mathbf {L} & 0 \\ 0 & 0 \end{matrix}\right]^T \succeq 0$
 
[sp]$\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}\geq\frac{27}{2(a+b+c)^2}$.................(1)

or
$2(a+b+c)(\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)})\geq\frac{27}{(a+b+c)}$

But :

$2(a+b+c)(\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)})$ =

=$[(\sqrt(a+b))^2+(\sqrt (b+c))^2+(\sqrt (c+a))^2][(\frac{1}{\sqrt b(a+b)})^2+(\frac{1}{\sqrt c(b+c)})^2+(\frac{1}{\sqrt a(c+a)})^2]$

Which according to the B-C-S inequality is greater or equal to:

$(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2$Hence we have to prove:

$(\frac{1}{\sqrt b} +(\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq \frac{27}{a+b+c)}$ to satisfy (1)

or:

$(a+b+c)(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq 27$..............(2)But from the inequalities:

$(\sqrt a-\sqrt b)^2\geq 0$, $(\sqrt b-\sqrt c)^2\geq 0$, $\sqrt c-\sqrt a)^2)\geq 0$

we can get the inequality:

$(a+b+c)\geq\frac{(\sqrt a+\sqrt b+\sqrt c)^2}{3}$
and multiplying both sides of the above inequality by$ (\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2$ we have:$(a+b+c)(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq\frac{(\sqrt a+\sqrt b+\sqrt c)^2}{3}(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2$
Hence to satisfy (2) and thus (1) we have to prove that:$\frac{(\sqrt a+\sqrt b+\sqrt c)^2}{3}(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})^2\geq 27$

or$(\sqrt a+\sqrt b+\sqrt c)(\frac{1}{\sqrt b} +\frac{1}{\sqrt c}+\frac{1}{\sqrt a})\geq 9$

Which is true by using again the B-C-S inequality where we put:

$x_1$=$a^\frac{1}{4}$ $x_2=\frac{1}{a^\frac{1}{4}}$

$y_1=b^\frac{1}{4}$ $y_2= \frac{1}{b^\frac{1}{4}}$

$z_1=c^\frac{1}{4}$ $z_2= \frac{1}{b^\frac{1}{4}}$[/sp]
 
Back
Top