MHB Proving $\int^{\infty}_{0}\frac{\sin x}{x} = \frac{\pi}{2}$

  • Thread starter Thread starter alyafey22
  • Start date Start date
AI Thread Summary
The discussion focuses on proving the integral $\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$ using various methods. The first method employs the Laplace Transform, demonstrating that $\mathcal{L} \{\frac{\sin t}{t}\} = \frac{\pi}{2}$ through integration. The second method utilizes the Fourier Transform, showing that the integral evaluates to 1 over the entire real line, leading to the same result for the positive half. A third approach involves complex analysis and contour integration, which, while more complex, also confirms the integral's value. Overall, the discussion highlights multiple valid techniques to arrive at the same conclusion regarding the integral's value.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following :

$$\int^{\infty}_{0} \frac{\sin (x) }{ x} = \frac{\pi }{2}$$

There are three different methods to solve the integral .
 
Mathematics news on Phys.org
I'm affectionated to the Laplace Transform so that I remember it's following property...

$\displaystyle \mathcal{L} \{f(t)\} = F(s) \implies \mathcal{L} \{\frac{f(t)}{t}\} = \int_{s}^{\infty} F(u)\ du$ (1)

... so that is...

$\displaystyle \mathcal{L} \{\sin t\} = \frac{1}{1 + s^{2}} \implies \mathcal{L} \{ \frac{\sin t}{t}\} = \int_{s}^{\infty} \frac {d u}{1+ u^{2}} = \frac{\pi}{2} - \tan^{-1} s$ (2)

... and computing (2) for s=0 we find...

$\displaystyle \int_{0}^{\infty} \frac{\sin t}{t}\ dt = \frac{\pi}{2}$ (3)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
I'm affectionated to the Laplace Transform so that I remember it's following property...

$\displaystyle \mathcal{L} \{f(t)\} = F(s) \implies \mathcal{L} \{\frac{f(t)}{t}\} = \int_{s}^{\infty} F(u)\ du$ (1)

... so that is...

$\displaystyle \mathcal{L} \{\sin t\} = \frac{1}{1 + s^{2}} \implies \mathcal{L} \{ \frac{\sin t}{t}\} = \int_{s}^{\infty} \frac {d u}{1+ u^{2}} = \frac{\pi}{2} - \tan^{-1} s$ (2)

... and computing (2) for s=0 we find...

$\displaystyle \int_{0}^{\infty} \frac{\sin t}{t}\ dt = \frac{\pi}{2}$ (3)

Kind regards

$\chi$ $\sigma$

Excellent . Still two other ways to solve it .
 
I'm more of a Fourier Transform fan so I looked up (nr 202) its following property (picking one with a greek letter in it)...
$$\mathcal{F} \{\text{sinc }x\}(\xi) = \text{rect } \xi$$
$$\int_{-\infty}^{+\infty} \frac {\sin(\pi x)}{\pi x} e^{-2\pi i \xi x}dx = \text{rect } \xi$$

For $\xi = 0$ this is:
$$\int_{-\infty}^{+\infty} \frac {\sin(\pi x)}{\pi x} dx = 1$$

Substituting $\pi x = t$ gives:
$$\int_{-\infty}^{+\infty} \frac {\sin t}{t} dx = \pi$$

And since $\frac {\sin t}{t}$ is symmetric, we get:
$$\int_{0}^{\infty} \frac {\sin t}{t} dx = \frac \pi 2$$
 
I like Serena said:
I'm more of a Fourier Transform fan so I looked up (nr 202) its following property (picking one with a greek letter in it)...
$$\mathcal{F} \{\text{sinc }x\}(\xi) = \text{rect } \xi$$
$$\int_{-\infty}^{+\infty} \frac {\sin(\pi x)}{\pi x} e^{-2\pi i \xi x}dx = \text{rect } \xi$$

For $\xi = 0$ this is:
$$\int_{-\infty}^{+\infty} \frac {\sin(\pi x)}{\pi x} dx = 1$$

Substituting $\pi x = t$ gives:
$$\int_{-\infty}^{+\infty} \frac {\sin t}{t} dx = \pi$$

And since $\frac {\sin t}{t}$ is symmetric, we get:
$$\int_{0}^{\infty} \frac {\sin t}{t} dx = \frac \pi 2$$

I didn't know it can be solved this way . I had two other methods in mind :)
 
A milestone of complex analysis is the use of Cauchy Integral Theorems for solving integrals that are 'resistent' to 'conventional' attaks. In particular the first of these theorems extablishes that if a complex variable function is analytic inside and along a closed path C is...

$\displaystyle \int_{C} f(z)\ d z = 0$ (1)

Now we computing (1) in the case $\displaystyle f(z)= \frac{e^{i\ z}}{z}$ when the path is represented in the figure...

View attachment 805

... and when $R \rightarrow \infty$ and $r \rightarrow 0$. The Jordan's lemma extablishes that the integral along the 'big circle' tends to 0 if $ R \rightarrow \infty$ , so that, tacking into account (1), we conclude that is...

$\displaystyle \int_{- \infty}^{+ \infty} \frac{\sin x}{x}\ dx = \lim_{r \rightarrow 0} \int_{0}^{\pi} e^{i\ r\ e^{i \theta}}\ d \theta = \pi$ (2)

Details have been omitted but it's clear that this approach is more complex and less elegant that the Laplace Transform approach...

Kind regards

$\chi$ $\sigma$
 

Attachments

  • MHB25.PNG
    MHB25.PNG
    700 bytes · Views: 72
Last edited:
chisigma said:
Details are been omitted but it's clear that this approach is more complex and less elegant that the Laplace Transform approach...

A complex analysis approach is necessarily complex ;) , but I don't I agree it is less elegant .
 
The last method

See hint
Differentiation under the integral sign
 
You can also use contour integration to evaluate $\displaystyle \int_{0}^{\infty} \frac{\sin^{n} x}{x^{n}} \ dx \ (n = 2, 3, \ldots) $.$\displaystyle \int_{0}^{\infty} \frac{\sin^{n} x}{x^{n}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{n} x}{x^{n}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{x^{n}} \Big( \frac{e^{ix}-e^{-ix}}{2i} \Big)^{n} \ dx$

$ \displaystyle = \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \int_{-\infty}^{\infty} \frac{1}{(x-i \epsilon)^{n}} \Big( e^{ix}-e^{-ix} \Big)^{n} \ dx $The last line is justified for $n >1$ by the dominated convergence theorem.$ \displaystyle = \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \int_{-\infty}^{\infty} \frac{1}{(x-i \epsilon)^{n}} \sum_{k=0}^{n} \binom{n}{k} (e^{ix})^{n-k} (-e^{-ix})^{k} \ dx $ (binomial theorem)

$ \displaystyle = \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \int_{-\infty}^{\infty} \frac{1}{(x-i \epsilon)^{n}} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} e^{ix(n-2k)} \ dx $

$ \displaystyle = \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \int_{-\infty}^{\infty} \frac{e^{ix(n-2k)}}{(x- i \epsilon)^{n}} \ dx$Now let $\displaystyle f(z) = \frac{e^{iz(n-2k)}}{(z- i \epsilon)^{n}}$ and integrate around a large closed half-circle in the upper-half complex plane if $n-2k \ge 0$, and around a large closed half-circle in the lower-half plane if $n - 2k < 0$.

There will be no contribution from the integrals around the half-circle in the lower-half plane since the pole is in the upper half plane. So we'll be summing from $k=0$ to the largest integer such that $k \le \frac{n}{2}$.$ \displaystyle = \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{k} (-1)^{k} \ 2 \pi i \ \text{Res}[f,i \epsilon]$The pole at $z=i \epsilon$ is of order $n$.So $\displaystyle \text{Res} [f, i \epsilon] = \frac{1}{(n-1)!} \lim_{z \to i \epsilon} \frac{d^{n-1}}{dx^{n-1}} \ e^{iz(n-2k)} = \frac{1}{(n-1)!} \lim_{z \to i \epsilon} i^{n-1} (n-2k)^{n-1} e^{iz(n-k)} $

$ \displaystyle = \frac{1}{(n-1)!} i^{n-1} (n-2k)^{n-1} e^{-\epsilon(n-k)} $And $\displaystyle \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{k} (-1)^{k} 2 \pi i \ \text{Res}[f,i \epsilon] $

$ \displaystyle = \frac{1}{2} \frac{1}{(2i)^{n}} \lim_{\epsilon \to 0^{+}} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{k} (-1)^{k} 2 \pi i \ \frac{1}{(n-1)!} i^{n-1} (n-2k)^{n-1} e^{-\epsilon(n-k)}$

$ \displaystyle = \frac{\pi}{2^{n}(n-1)!} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{k} (-1)^{k} (n-2k)^{n-1} $So, for example, $\displaystyle \int_{0}^{\infty} \frac{\sin^{5} x}{x^{5}} \ dx = \frac{\pi}{2^{5}4!} \sum_{k=0}^{2} \binom{5}{k} (-1)^{k}(5-2k)^{4}= \frac{\pi}{768} \Big(5^4-5(3)^{4} +10(1)^4 \Big) = \frac{115 \pi}{384}$
 
Last edited:
  • #10
Here is the third , using differentiation under the integral sign F(a)=\int^{\infty}_0 \frac{\sin(x) e^{-ax}}{x}\, dxF&#039;(a)=-\int^{\infty}_0 \sin(x) e^{-ax}\, dxF&#039;(a)=-\int^{\infty}_0 \sin(x) e^{-ax}\, dx=\frac{-1}{a^2+1}F(a)=-\arctan(a)+CC=\lim_{a\to \infty }F(a) +\arctan(a)= \frac{\pi}{2}F(a)=-\arctan(a)+ \frac{\pi}{2}F(0)=\int^{\infty}_0 \frac{\sin(x) }{x}=\frac{\pi}{2}
 
  • #11
$\int_{0}^{\infty} \sin (x) e^{-ax} = \frac{1}{1+a^{2}} $ for $a >0$

So really what you're saying is that

$ \lim_{a \to 0^{+}} \int_{0}^{\infty} \frac{\sin (x) e^{-ax}}{x} \ dx = \int_{0}^{\infty} \lim_{a \to 0} \frac{\sin (x) e^{-ax}}{x} \ dx = \int_{0}^{\infty} \frac{\sin x}{x} \ dx = \lim_{a \to 0} \Big( \arctan(a) + \frac{\pi}{2} \Big) = \frac{\pi}{2}$

Bringing the limit inside of the integral is not easy to justify since $\int_{0}^{\infty} \frac{\sin x}{x} \ dx$ does not converge absolutely.The following is an example where things go horribly wrong.

$\lim_{a \to 0^{+}} \int_{0}^{\infty} \sin(x) e^{-ax} \ dx = \int_{0}^{\infty} \lim_{a \to 0^{+}} \sin(x) e^{-ax} \ dx =\int_{0}^{\infty} \sin x \ dx = \lim_{a \to 0^{+}} \frac{1}{1+a^{2}}= 1 $
 
Last edited:
  • #12
Random Variable said:
$$ \lim_{a \to 0^{+}} \int_{0}^{\infty} \frac{\sin (x) e^{-ax}}{x} \ dx = \int_{0}^{\infty} \lim_{a \to 0} \frac{\sin (x) e^{-ax}}{x} \ dx = \int_{0}^{\infty} \frac{\sin x}{x} \ dx = \lim_{a \to 0} \Big( \arctan(a) + \frac{\pi}{2} \Big) = \frac{\pi}{2}$$
If We take $$F(a)=\lim_{a \to 0^{+}} \int_{0}^{\infty} \frac{\sin (x) e^{-ax}}{x} \ dx $$

since F(a) exists for a=0 then we can pass the limit inside .
The following is an example where things go horribly wrong.

$$\lim_{a \to 0^{+}} \int_{0}^{\infty} \sin(x) e^{-ax} \ dx = \int_{0}^{\infty} \lim_{a \to 0^{+}} \sin(x) e^{-ax} \ dx =\int_{0}^{\infty} \sin x \ dx = \lim_{a \to 0^{+}} \frac{1}{1+a^{2}}= 1 $$

Since at a=0 the integral doesn't converge , we cannot pass the limit inside .
 
  • #13
since F(a) exists for a=0 then we can pass the limit inside

There is no theorem that says that's true in general.
 
  • #14
Random Variable said:
There is no theorem that says that's true in general.

It always works for me , may be I need to prove it. Can you give an example that if we swap we get a different convergent value ?
 
  • #15
$\displaystyle \lim_{n \to \infty} \int_{0}^{\infty} \frac{n \arctan x}{n^2+x^{2}} \ dx = \int_{0}^{\infty} \lim_{n \to \infty} \frac{n \arctan x}{n^2+x^{2}} \ dx = \int_{0}^{\infty} 0 \ dx = 0 $

But $ \displaystyle \lim_{n \to \infty} \int_{0}^{\infty} \frac{n \arctan x}{n^2+x^{2}} \ dx$ tends to $\frac{\pi^{2}}{4}$
 
  • #16
ZaidAlyafey said:
Here is the third , using differentiation under the integral sign F(a)=\int^{\infty}_0 \frac{\sin(x) e^{-ax}}{x}\, dxF&#039;(a)=-\int^{\infty}_0 \sin(x) e^{-ax}\, dxF&#039;(a)=-\int^{\infty}_0 \sin(x) e^{-ax}\, dx=\frac{-1}{a^2+1}F(a)=-\arctan(a)+CC=\lim_{a\to \infty }F(a) +\arctan(a)= \frac{\pi}{2}F(a)=-\arctan(a)+ \frac{\pi}{2}F(0)=\int^{\infty}_0 \frac{\sin(x) }{x}=\frac{\pi}{2}

Isn't this the same as chisigma[/color]'s solution?

Note that $$\mathcal L\{\frac {\sin x} x\}(a) = \int^{\infty}_0 \frac{\sin(x) e^{-ax}}{x}\, dx$$.
Combine with the Laplace formula for taking a derivative and there you go...
 
  • #17
I like Serena said:
Isn't this the same as chisigma[/color]'s solution?

Note that $$\mathcal L\{\frac {\sin x} x\}(a) = \int^{\infty}_0 \frac{\sin(x) e^{-ax}}{x}\, dx$$.
Combine with the Laplace formula for taking a derivative and there you go...

Lots of things look different while they are actually the same. Finding the connection is not so easy, though .
 
  • #18
My preferred method

$\displaystyle \int_{0}^{\infty} \frac{\sin x}{x} \ dx$

Integrate by parts by letting $u= \frac{1}{x}$ and $dv = \sin x \ dx$.

For $v$ choose the antiderivative $1- \cos x$.

$ \displaystyle = \frac{1- \cos x}{x} \big|^{\infty}_{0} + \int_{0}^{\infty} \frac{1- \cos x}{x^{2}} \ dx = \int_{0}^{\infty} \frac{1- \cos x}{x^{2}} \ dx$

$ \displaystyle = \int_{0}^{\infty} \int_{0}^{\infty} (1- \cos x) te^{-xt} \ dt \ dx $

Since the integrand is always nonnegative, Fubini's/Tonelli's theorem says that we can switch the order of integration. That's why I initially integrated by parts.

$ \displaystyle = \int_{0}^{\infty} \int_{0}^{\infty} t (1- \cos x) e^{-tx} \ dx \ dt = \int_{0}^{\infty} t \Big( \frac{1}{t} - \frac{t}{1+t^{2}} \Big) \ dt$

$ \displaystyle = \int_{0}^{\infty} \frac{1}{1+t^{2}} \ dt = \frac{\pi}{2}$
 
Last edited by a moderator:
  • #19
ZaidAlyafey said:
Lots of things look different while they are actually the same. Finding the connection is not so easy, though .

I guess the trick is in understanding how the Laplace transform works.
Once you learn how to apply it in its integral form, your derivation pops out.
As for the Fourier transform, I have to admit that it's not so nice to look up a transform.
On the other hand, it's really easy to deduce the inverse transform of the rectangle function:
$$\mathcal F^{-1}\{\text{rect } \xi\}(x) = \int_{-\infty}^\infty \text{rect } \xi \ e^{2\pi i \xi x} d\xi = \int_{-1/2}^{1/2} e^{2\pi i \xi x} d\xi = \left. \frac 1 {2\pi i x} e^{2\pi i \xi x} \right|_{-1/2}^{1/2} = \frac 1 {2i \pi x}(e^{i \pi x} - e^{-i \pi x}) = \text{sinc x}$$

So that makes the Fourier transform solution still pretty easy and really different (that is, no derivative involved).

- - - Updated - - -

Random Variable said:
$ \displaystyle = \int_{0}^{\infty} \int_{0}^{\infty} (1- \cos x) te^{-xt} \ dt \ dx $

Where did that new integral come from?
It looks suspiciously like a Laplace transform.
 
Last edited:
  • #20
Where did that new integral come from?
It looks suspiciously like a Laplace transform.

I just expressed the integral as an iterated integral by using the Laplace transform $ \displaystyle \int_{0}^{\infty} t e^{-xt} \ dt = \frac{1}{x^{2}}$.

In general, $\displaystyle \int_{0}^{\infty} t^{n} e^{-xt} \ dt = \frac{n!}{x^{n+1}}$.

A lot of integrals can be evaluated in this manner.
 
Last edited:
Back
Top