MHB Proving $\int_{\mathbb{R}^3}\Delta G(x,y)dx=1$ with Gauss's Theorem

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
The discussion focuses on proving that the integral of the Laplacian of the function \( G(x,y) = -\frac{1}{4\pi} \frac{1}{||\overline{x} - \overline{y}||} \) over \( \mathbb{R}^3 \) equals 1. It is established that it suffices to show this for \( G(x,0) \) due to the symmetry of the function. The Laplacian \( \Delta G(x,y) \) is zero for \( x \neq y \), allowing the integral to be computed over a ball of radius \( r \). The application of Gauss's theorem leads to evaluating the surface integral, which simplifies to 1 as \( r \) approaches infinity. The conclusion confirms that \( \int_{\mathbb{R}^3} \Delta G(x,y) dx = 1 \).
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)We have $G(x,y)=-\frac{1}{4 \pi} \frac{1}{||\overline{x}-\overline{y}||}$ for $x, y \in \mathbb{R}^3$.I want to show that $\int_{\mathbb{R}^3} \Delta{G(x,y)} dx= 1$.

It suffices to show that $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= 1$, since setting $\overline{x}=x-y$ we have $G(\overline{x},0)=G(x,y)$, right?

It holds that $\Delta G(x,y)=0$ for $x \neq y$, so $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= \int_{B(0,r)} \Delta{G(x,0)}$.

How can we apply Gauss's theorem in order to compute the above integral?
 
Physics news on Phys.org
evinda said:
Hello! (Wave)We have $G(x,y)=-\frac{1}{4 \pi} \frac{1}{||\overline{x}-\overline{y}||}$ for $x, y \in \mathbb{R}^3$.I want to show that $\int_{\mathbb{R}^3} \Delta{G(x,y)} dx= 1$.

It suffices to show that $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= 1$, since setting $\overline{x}=x-y$ we have $G(\overline{x},0)=G(x,y)$, right?

It holds that $\Delta G(x,y)=0$ for $x \neq y$, so $\int_{\mathbb{R}^3} \Delta{G(x,0)} dx= \int_{B(0,r)} \Delta{G(x,0)}$.

How can we apply Gauss's theorem in order to compute the above integral?

Hi evinda! (Smile)

What do $\overline x$ and $\overline y$ represent?
And what is $\Delta{G(x,y)}$, since he Laplacian operator $\Delta$ usually applies only to some $x \in \mathbb R^3$? (Wondering)

Anyway, I think we would have:
$$\int_{\mathbb{R}^3} \Delta{G(x,0)} \,dx
=\lim_{r\to\infty} \int_{B(0,r)} \Delta{G(x,0)} \,dx
=\lim_{r\to\infty} \int_{B(0,r)} \nabla \cdot \nabla {G(x,0)} \,dx
\overset{\text{Gauss}}=\lim_{r\to\infty} \oint_{\partial B(0,r)} \nabla {G(x,0)} \,dS \\
=\lim_{r\to\infty} \oint_{\partial B(0,r)} \nabla {-\frac {1}{4\pi r}} \,dS
=\lim_{r\to\infty} \oint_{\partial B(0,r)} {\frac {1}{4\pi r^2}}\,dS
=\lim_{r\to\infty} {\frac {1}{4\pi r^2}}\cdot 4\pi r^2 = \lim_{r\to\infty} 1 = 1
$$
(Thinking)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K