MHB Proving Miquel's Theorem: Need Help!

  • Thread starter Thread starter pholee95
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
To prove Miquel's Theorem, one should start by identifying point M as the intersection of two circumcircles from the triangles AEF, BDF, and CDE. By drawing lines MD, ME, and MF, the properties of cyclic quadrilaterals can be utilized to demonstrate that M also lies on the third circumcircle. The theorem asserts that for any triangle ABC with points D, E, and F on sides BC, AC, and AB, the circumcircles intersect at point M. A reference to the Wikipedia page on Miquel's Theorem is suggested for additional insights. This approach effectively establishes the necessary proof for the theorem.
pholee95
Messages
9
Reaction score
0
I don't know how to start proving this theorem, so can someone please help? I need to prove that the circumcircles all intersect at a point M. Thank you!

Miquel's Theorem: If triangleABC is any triangle, and points D, E, F are chosen in the interiors of the sides BC, AC, and AB, respectively, then the circumcircles for triangleAEF, triangleBDF, and triangleCDE intersect in a point M.

I have attached here the figure of theorem.
 

Attachments

  • Screenshot 2016-11-21 at 11.01.41 AM.png
    Screenshot 2016-11-21 at 11.01.41 AM.png
    11.1 KB · Views: 123
Mathematics news on Phys.org
pholee95 said:
I don't know how to start proving this theorem, so can someone please help? I need to prove that the circumcircles all intersect at a point M. Thank you!

Miquel's Theorem: If triangleABC is any triangle, and points D, E, F are chosen in the interiors of the sides BC, AC, and AB, respectively, then the circumcircles for triangleAEF, triangleBDF, and triangleCDE intersect in a point M.

I have attached here the figure of theorem.
Have you looked at https://en.wikipedia.org/wiki/Miquel's_theorem? The trick seems to be to take $M$ to be the point where two of the three circles meet, draw the lines $MD$, $ME$ and $MF$, then use properties of cyclic quadrilaterals to show that $M$ also lies on the third circle.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K