1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Proving momentum equation for neutrino/nucleon scattering

Tags:
  1. Jan 4, 2014 #1
    1. The problem statement, all variables and given/known data

    Prove the relationship between the momentum of the neutrino or nucleon in an elastic scattering of them in the center of mass frame is [itex]p'^{2}[/itex]=[itex]m_{1}E_{2}/2[/itex], where p' is the momentum of the neutrino or nucleon in the center of mass frame, [itex]m_{1}[/itex] is the mass of the nucleon, and [itex]E_{2}[/itex] is the relativistic energy of the neutrino in the laboratory frame. Assume the nucleon is initially at rest in the laboratory frame.

    2. Relevant equations

    p'=[itex]\frac{1}{\sqrt{1-(v/c)^{2}}}[/itex][p-[itex]\frac{vE}{c^{2}}[/itex]]

    [itex]p'_{1}[/itex]: momentum of nucleon in center of mass frame
    [itex]p_{1}[/itex]: momentum of nucleon in laboratory frame
    [itex]p'_{2}[/itex]: momentum of neutrino in center of mass frame
    [itex]p_{2}[/itex]: momentum of neutrino in laboratory frame
    [itex]E'_{1}[/itex]: energy of nucleon in center of mass frame
    [itex]E_{1}[/itex]: energy of nucleon in laboratory frame
    [itex]E'_{2}[/itex]: energy of neutrino in center of mass frame
    [itex]E_{2}[/itex]: energy of neutrino in laboratory frame

    v: velocity of center of mass frame relative to laboratory frame


    [itex]E^{2}[/itex]=[itex]p^{2}[/itex][itex]c^{2}[/itex]+[itex]m^{2}_{0}[/itex][itex]c^{2}[/itex]

    3. The attempt at a solution

    First find the velocity of the center of mass frame:

    [itex]p'_{1}[/itex] + [itex]p'_{2}[/itex]=0
    [itex]\gamma[/itex][[itex]p_{1}[/itex]-[itex]\frac{vE_{1}}{c^{2}}[/itex]]+[itex]\gamma[/itex][[itex]p_{2}[/itex]-[itex]\frac{vE_{2}}{c^{2}}[/itex]]=0
    [itex]p_{1}[/itex]-[itex]\frac{vE_{1}}{c^{2}}[/itex]+[itex]p_{2}[/itex]-[itex]\frac{vE_{2}}{c^{2}}[/itex]=0

    Since the nucleon is at rest in the laboratory frame, [itex]p_{1}[/itex] is 0:

    [itex]p_{1}[/itex]-[itex]\frac{vE_{1}}{c^{2}}[/itex]+[itex]p_{2}[/itex]-[itex]\frac{vE_{2}}{c^{2}}[/itex]=0
    [itex]0[/itex]-[itex]\frac{vE_{1}}{c^{2}}[/itex]+[itex]p_{2}[/itex]-[itex]\frac{vE_{2}}{c^{2}}[/itex]=0
    [itex]p_{2}[/itex]=[itex]\frac{vE_{1}}{c^{2}}[/itex]+[itex]\frac{vE_{2}}{c^{2}}[/itex]
    [itex]p_{2}[/itex]=[itex]\frac{vE_1+vE_2}{c^2}[/itex]
    [itex]p_{2}[/itex]=[itex]\frac{v(E_1+E_2)}{c^2}[/itex]
    [itex]\frac{p_{2}c^2}{E_1+E_2}[/itex]=v

    Then get an expression for the squared momentum of the nucleon in the center of mass frame, using the above for the velocity, 0 for [itex]p_{1}[/itex], and [itex]m_{1}c^{2}[/itex] for [itex]E_{1}[/itex]:

    [itex]p'_{1}[/itex]=[itex]\frac{1}{\sqrt{1-(v/c)^{2}}}[/itex][[itex]p_{1}[/itex]-[itex]\frac{vE_{1}}{c^{2}}[/itex]]
    [itex]p'_{1}[/itex]=[itex]\frac{1}{\sqrt{1-(v/c)^{2}}}[/itex][[itex]0[/itex]-[itex]\frac{vm_{1}c^{2}}{c^{2}}[/itex]]
    [itex]p'_{1}[/itex]=[itex]\frac{1}{\sqrt{1-(v/c)^{2}}}[{-vm_{1}}[/itex]]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{m^{2}_{1}v^{2}}{1-(v/c)^{2}}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{m^{2}_{1}}{1-(\frac{p_{2}c}{E_1+E_2})^{2}}[/itex][itex](\frac{p_{2}c^{2}}{E_1+E_2})^{2}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{m^{2}_{1}(E_1+E_2)^{2}}{(E_1+E_2)^{2}-p^{2}_{2}c^2}[/itex][itex]\frac{p^{2}_{2}c^{4}}{(E_1+E_2)^{2}}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{(m^{2}_{1}c^2)(p^{2}_{2}c^2)}{(E_1+E_2)^{2}-p^{2}_{2}c^2}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{(m^{2}_{1}c^2)(p^{2}_{2}c^2)}{(m_{1}c^2+E_2)^{2}-p^{2}_{2}c^2}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{(m^{2}_{1}c^2)(p^{2}_{2}c^2)}{m^{2}_{1}c^{4}+2m_{1}c^{2}E_{2}+E^{2}_{2}-p^{2}_{2}c^2}[/itex]

    Since the book was written before it was discovered that neutrinos have mass, the [itex]p_{2}c[/itex] was assumed to be equal to just [itex]E_{2}[/itex]:

    [itex]p'^{2}_{1}[/itex]=[itex]\frac{(m^{2}_{1}c^2)(E^{2}_{2})}{m^{2}_{1}c^{4}+2m_{1}c^{2}E_{2}+E^{2}_{2}-E^{2}_{2}}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{m^{2}_{1}c^{2}E^{2}_{2}}{m^{2}_{1}c^{4}+2m_{1}c^{2}E_{2}}[/itex]
    [itex]p'^{2}_{1}[/itex]=[itex]\frac{m_{1}E^{2}_{2}}{m_{1}c^{2}+2E_{2}}[/itex]

    And then the only way to get the answer from there would be to assume that [itex]E_{2}[/itex] was much greater than [itex]m_{1}c^2[/itex], but I'm not sure if I'm allowed to assume that. Or did I screw up the calculations somewhere?
     
  2. jcsd
  3. Jan 5, 2014 #2

    TSny

    User Avatar
    Homework Helper
    Gold Member

    Hello, gildomar.

    I haven't checked all your steps, but I think your answer is correct. As you say, it appears that you need to assume E2 >> m1c2 and make an approximation to get the result given in the statement of the problem.

    You can avoid a lot of algebra if you work with the concept that the "length" of a 4-vector is the same in all frames.

    Total energy and total momentum can be combined to make a 4-vector: Pμtot
    where P0tot= Etot/c and P1tot = Ptot,x. You can forget the y and z components for this problem.

    The square of the length of the 4-vector is (P0)2-(P1)2

    Conservation of energy and momentum implies Pμtot, final = Pμtot, initial for each component μ.

    Therefore the length of the final 4-vector must equal the length of the initial 4-vector. And you can evaluate the length in any frame since the length is invariant.

    See what you get if you set the square of the length of the initial 4-vector in the lab frame equal to the square of the length of the final 4-vector in the CM frame.
     
    Last edited: Jan 5, 2014
  4. Jan 5, 2014 #3
    I'll try that, but the way that it's worded in the book implies that I need to use the momentum/energy transformation equation that I showed at the start.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Proving momentum equation for neutrino/nucleon scattering
Loading...