MHB Proving N(H) is a Subgroup of G Containing H

  • Thread starter Thread starter Jen917
  • Start date Start date
  • Tags Tags
    Subgroup
Click For Summary
N(H) is defined as the set of elements in group G that conjugate every element of subgroup H back into H. To prove N(H) is a subgroup of G containing H, it must be shown that N(H) is closed under the group operation and contains inverses. The discussion highlights the need to demonstrate that for any elements x and y in N(H), the product xy also belongs to N(H). Additionally, it raises the question of whether H is finite, which may impact the proof, and considers the function mapping elements of H under conjugation by x. Overall, the focus is on establishing the subgroup properties of N(H) in relation to H.
Jen917
Messages
3
Reaction score
0
Let G be a group and let H be a subgroup.

Define N(H)={x∈G|xhx-1 ∈H for all h∈H}. Show that N(H) is a subgroup of G which contains H.

To be a subgroup I know N(H) must close over the operations and the inverse, but I am not sure hot to show that in this case.
 
Physics news on Phys.org
Jen917 said:
Let G be a group and let H be a subgroup.

Define N(H)={x∈G|xhx-1 ∈H for all h∈H}. Show that N(H) is a subgroup of G which contains H.

To be a subgroup I know N(H) must close over the operations and the inverse, but I am not sure hot to show that in this case.

Hi Jen917! Welcome to MHB! (Smile)

To prove that the operation is closed, we need to prove that for all $x, y \in N(H)$:
$$\forall h \in H: (xy)h(xy)^{-1} \overset ?\in H$$
Can we find that using $xhx^{-1} \in H$ and $yhy^{-1} \in H$? (Wondering)To prove that the inverse belongs to the set, we need a sub step first.
Either way, it requires that $H$ is finite. Is it?

Suppose $x$ is an element of $N(H)$.
Now consider the function $H\to H$ given by $h \mapsto xhx^{-1}$.
Is it a bijection? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
439
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 26 ·
Replies
26
Views
753
Replies
1
Views
1K