Proving n2 < n! for n > 3: Simplifying the Induction Step

  • Context: Undergrad 
  • Thread starter Thread starter murshid_islam
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary
SUMMARY

The discussion focuses on proving the inequality n² < n! for n > 3 using mathematical induction. The base case is established with n = 4, where 4² < 4!. The inductive step assumes the inequality holds for n = k and aims to prove it for n = k+1. Participants suggest that while the proof is valid, it may feel forced, and they recommend simplifying the induction step by leveraging known inequalities. The consensus is that the proof is sound, albeit not the most elegant.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with factorial notation and properties
  • Basic knowledge of inequalities
  • Concept of bounding terms in proofs
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore inequalities involving factorials and their properties
  • Learn about bounding techniques in mathematical proofs
  • Investigate other proofs of similar inequalities, such as 2^n < n!
USEFUL FOR

Mathematicians, students studying advanced mathematics, and anyone interested in understanding mathematical proofs and inequalities.

murshid_islam
Messages
468
Reaction score
21
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.
 
Mathematics news on Phys.org
murshid_islam said:
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.
The steps you take seem correct. A bit simpler way is to think of what you want to prove: (k+1)2<(k+1)! and by using equivalent relations to simplify it, like this for example:

(k+1)2<(k+1)!<=>
(k+1)(k+1)<k! (k+1)<=> *note k+1>0*
k+1<k!

We know that k2<k! so we just have to prove that k+1<k2, which is easy because k(k-1)>1 for any k>3
 
Last edited:
I'm not a big fan of this particular inductive proof, since I've never found a short argument that didn't require me to manipulate both sides of the inequality like that. I've seen a similar proof on www.inductiveproofs.com that is 2^n < n! -- maybe that one will provide some inspiration.
 
murshid_islam said:
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.

Thereis no simpleway of doing this . For all mathematcialproof by inductionyou must assume p(k) is true and then prove p(K+1) is true for all n =1,2... which you haveseem tobe done any way
 
murshid_islam said:
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.

i know exactly what you mean. the trouble is, for n < 4, the theorem simply isn't true:

12 = 1! = 1
22 > 2! = 2
32 > 3! = 6

and it's not like for n = 3, we have equality, or that 32 is "just barely" more than 3!, the break-even point is somewhere between 3 and 4 (if you were using the gamma function, for example). so when we get to the part where we use n > 3:

1 < k-1

it's not "elegant", we prove something a little stronger than we need (after all, k = 3 would make that statement true, but then our "base case" fails).

this often happens with inequalities, the bounding term is often something that is more than "just barely greater than".

i wouldn't worry over-much about this, your proof is clear, clean, and well-reasoned. there's bigger molehills to make into mountains, if you're into that sort of thing.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
955
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K