MHB Proving P∩Q=R∩S for Curves $P,Q,R,S$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Curves $P,\,Q,\,R,\,S$ are defined in the plane as follows:

$P=\{(x,\,y):x^3-3xy^2+3y=1\}$

$Q=\{(x,\,y):3x^2y-3x-y^3=0\}$

$R=\left\{(x,\,y):x^2-y^2=\dfrac{x}{x^2+y^2} \right\}$

$S=\left\{(x,\,y):2xy+\dfrac{y}{x^2+y^2}=3 \right\}$

Prove that $P\cap Q=R\cap S$.
 
Mathematics news on Phys.org
anemone said:
Curves $P,\,Q,\,R,\,S$ are defined in the plane as follows:

$P=\{(x,\,y):x^3-3xy^2+3y=1\}$

$Q=\{(x,\,y):3x^2y-3x-y^3=0\}$

$R=\left\{(x,\,y):x^2-y^2=\dfrac{x}{x^2+y^2} \right\}$

$S=\left\{(x,\,y):2xy+\dfrac{y}{x^2+y^2}=3 \right\}$

Prove that $P\cap Q=R\cap S$.
if we want to prove that: $P\cap Q=R\cap S$
then the solutions of $P\,\,and \,\, Q\,\, must\,\,=$ the solutions of $R \,\, and \,\,S$
to find their solutions is tedious,I will use the following approach:
from $R:$ $x^4-y^4=x---(1)$
from $P:$ $x^4-3x^2y^2+3xy=x---(2)$
from (1) and (2):$x^4-3x^2y^2+3xy=x^4-y^4$
or $3x^2y-3x-y^3=0 (y\neq 0)$
$\therefore$ from $ P,R$ we get equation $Q$
using the smilar method
from $ R,S$ we get equation $Q$
from $ P,Q$ we get equation $R$
--------
and the proof can be done this way
 
Last edited:
Bravo, Albert! I have never thought of approaching it like that! Good job!(Clapping)

Having said that, here is a solution of other that I also want to share with MHB:

Let $z=x+yi$.

The equations defining $P$ and $Q$ are the real and imaginary parts of the equation $z^3-3iz=1$ and similarly, the equations defining $R$ and $S$ are the real and imaginary parts of the equation $z^2=z^{-1}+3i$. Hence, for all real $x$ and $y$, we have

$(x,\,y)\in P\cap Q$ and $(x,\,y)\in R\cap S$

Thus $P\cap Q=R\cap S$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top