MHB Proving r*r=q in S, a Ring with Identity

  • Thread starter Thread starter Achieve
  • Start date Start date
  • Tags Tags
    Identity Ring
Achieve
Messages
2
Reaction score
0
Let S={p,q,r} and S=(S,+,*) a ring with identity. Let p be the identity for + and q the identity for *. Use the equation
r*(r+q)=r*r+r*q to deduce that r*r=q.

Attempt of a solution
r*r=r*(r+q)- r*q
=r*r+r*q - r*q
But I'm not finding a clever way to deduce what is required.
Any type of help would be appreciated.
 
Physics news on Phys.org
Since S is closed under $+$, $r+q$ is either $p$, $q$, or $r$. If $r+q = q$ or $r+q = r$, then we get $r = p$ or $q = p$, which are both false. So $r+q = p$. Substituting $p$ for $r+q$ in the equation

$r * (r + q) = r * r + r * q$

gives

$r * p = r * r + r * q$.

Since $p$ is the additive identity in S, $r * p = p$; since $q$ is the multiplicative identity, $r * q = r$. Therefore

$p = r * r + r$.

Adding $q$ to both sides results in $q = r * r + p$, or, $q = r * r$.
 
"Since p is the additive identity in S, r∗p=p"
Can you please explain why. I understand if p is the identity then r+p=r but not that statement.
 
It's because $r * p = r * (p - p) = r * p - r * p = p$.
 
A basic fact about rings, is that under addition, they form an abelian group.

In this case, the abelian group has order 3, so either of $q$ or $r$ is a generator.

Since the map $a \mapsto -a$ is a group isomorphism for any abelian group (in particular it maps a generator to a generator), it must be the case that either:

$-q = r$, or $-q = q$.

If $-q = q$, then $q + q = p$, in which case $q$ has order 2. But 2 does not divide 3, so this violates Lagrange.

Therefore, $-q = r$, that is $r + q = p$.

So from our given equation:

$r\ast(r + q) = r\ast r + r\ast q$ we get:

$r \ast p = r\ast r + r \ast q$ (from the above)

$r \ast p = r\ast r + r$ (since $q$ is the multiplicative identity).

Now, to see that $r \ast p = p$, note that:

$r \ast p = r\ast(p + p)$ (since $p + p = p$, since it is the additive group identity)

$= r \ast p + r\ast p$. Hence:

$p = -(r \ast p) + r\ast p = -(r\ast p) + r\ast p + r\ast p = p + r\ast p = r\ast p$.

Thus (continuing our first argument):

$p = r\ast r + r$, so that $r\ast r$ is the additive inverse of $r = -q$.

So $r\ast r = -(-q) = q$ (in a group, the inverse of an inverse is the original element).

****************************

The above is tedious, and complicated by notation. In point of fact, there is no reason not to denote $p$ by $0$, and $q$ by $1$. Thus:

$S = \{0,1,r\}$.

It is plain to see we must have $r = 1 + 1$. Now we can just calculate:

$(1+1)(1+1) = (1+1)+(1+1) = [(1+1)+1] + 1 = 0 + 1 = 1$

because $(1+1)+1 = 3\cdot 1 = 0$ (the "3rd power" of 1, written additively) by Lagrange.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
799
  • · Replies 3 ·
Replies
3
Views
878
Replies
21
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
737