If the derivative is strictly smaller than 1 everywhere in the space, this suggests that the mapping is a contraction. The criteria for a contraction mapping is that $|T(x)-T(y)| \le k |x-y|$, where $0\le k <1$. Now, if we assume $x\not=y$, this is like saying that
$$\frac{|T(x)-T(y)|}{|x-y|} \le k.$$
The LHS, you can see, looks a lot like a derivative. By the Mean Value Theorem, if the derivative is always strictly less than 1, then the LHS (slope of a secant line) must always be less than 1. Now I will say this: the value of $k$, it seems to me, is not constant on the entire space. I'm not sure you could have a particular $k$ that works everywhere. But my intuition tells me that you're never going to be able to produce a counterexample for the basic inequality of $|T(x)-T(y)| \le k |x-y|$. That's what you'd have to do to show that $T$ is not a contraction.
[EDIT] See below for a correction.