Proving that a "composition" is harmonic

Click For Summary
To prove that the function h = g(u(x,y), v(x,y)) is harmonic, where g is a harmonic function and f is holomorphic, one must compute the second partial derivatives h_xx and h_yy. The key is to apply the chain rule correctly while also considering the product rule when necessary. The goal is to show that h_xx + h_yy = 0, confirming that h is harmonic. While the calculations can be complex, they are essential for the proof. Understanding these derivative relationships is crucial for mastering this aspect of complex analysis.
kmitza
Messages
17
Reaction score
4
I am learning some complex analysis as it is a prerequisite for the masters program that I was accepted into and I didn't take it yet during my bachelors. I am using some lecture notes in Slovene and I have run into a problem that has proven troublesome for me :

If ##g: D \rightarrow \mathbb{C} ## is a harmonic function and ##f: D' \rightarrow D ## is holomorphic. If ## f= u +iv ## prove that
$$h = g(u(x,y),v(x,y)) $$ is harmonic.

My attempt was to just calculate the derivatives and obtain that it is zero but I got stuck in the calculation. It is entirely possible that this is an easy problem as I am not an analysis person but I would like to know if there is a simpler way of proving this than straight calculation?
 
Physics news on Phys.org
kmitza said:
I am learning some complex analysis as it is a prerequisite for the masters program that I was accepted into and I didn't take it yet during my bachelors. I am using some lecture notes in Slovene and I have run into a problem that has proven troublesome for me :

If ##g: D \rightarrow \mathbb{C} ## is a harmonic function and ##f: D' \rightarrow D ## is holomorphic. If ## f= u +iv ## prove that
$$h = g(u(x,y),v(x,y)) $$ is harmonic.

My attempt was to just calculate the derivatives and obtain that it is zero but I got stuck in the calculation. It is entirely possible that this is an easy problem as I am not an analysis person but I would like to know if there is a simpler way of proving this than straight calculation?
It should work out by taking the appropriate derivatives. You will need to be careful to apply the chain rule correctly.
 
kmitza said:
I am learning some complex analysis as it is a prerequisite for the masters program that I was accepted into and I didn't take it yet during my bachelors. I am using some lecture notes in Slovene and I have run into a problem that has proven troublesome for me :

If ##g: D \rightarrow \mathbb{C} ## is a harmonic function and ##f: D' \rightarrow D ## is holomorphic. If ## f= u +iv ## prove that
$$h = g(u(x,y),v(x,y)) $$ is harmonic.

My attempt was to just calculate the derivatives and obtain that it is zero but I got stuck in the calculation. It is entirely possible that this is an easy problem as I am not an analysis person but I would like to know if there is a simpler way of proving this than straight calculation?
As PeroK says, it's all a matter of computing $$h_{xx}, h_{yy}$$ and showing $$ h_{xx}+h_{yy} =0 $$ through the chain rule (and, I believe you'll need the product rule too, to take a partial of a partial).
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K