Here is my attempt to answer this guys, i'd really appreciate any corrections.(adsbygoogle = window.adsbygoogle || []).push({});

a vector space has the 0 vector

the vector space is closed under vector addition and scalar multiplication (AKA for every vector u, v in the subspace, there exists a vector u + v in the subspace)

Here we go.

The trivial solution is an indication that the 0 vector exists. I don't know how to prove that one, unless i write out the linear combination and set all the scalars to 0

The trivial solution is not the only solution: free variables and possibly 0 columns or rows exist. (also an indication that the 0 vector exists).

so if we row reduce the matrix to row echalon form and solve for [x1 ... xn] by moving the free variables to the right side of the homogenius equation then that would be the same as the additive property i mentioned above right? but how would i even know that u or v are in the vector space to begin with ? (remindeR: u and v are vector columns of the matrix A.)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proving that the solution of Ax=0 is a vector space

**Physics Forums | Science Articles, Homework Help, Discussion**