Delta2 said:
What exactly do you mean that ##\mathbb{C}## is algebraically closed ( do you mean that every polynomial has at least one root?) and what is this induction you speak about?
You can see from the discussion about it, that it is closely related. This means it depends on the definition of algebraically closed and the phrasing of the fundamental theorem of algebra what is left to prove.
I had in mind:
FTA = every polynomial has a zero
Closure = every polynomial splits into linear factors
Closure ##\Longrightarrow ## FTA: obvious
FTA ##\Longrightarrow ## Closure:
##\deg p =1:\quad p=x-z_1## Induction basis.
##\deg p=n:\quad \exists z_1\, : \,p(z_1)=0 \Longrightarrow p(x)=(x-z_1)p_1(x) \wedge \deg p_1=n-1##
Induction hypothesis: ##p_1(x)=(x-z_2)\cdot\ldots\cdot (x-z_{n}) ##
Induction step: ##p(x)=(x-z_1)p_1(x)=(x-z_1)(x-z_2)\cdot\ldots\cdot (x-z_{n}) ##
This is an extreme example, as the two statements are equivalent or even the same if you define and phrase them accordingly. It only should have demonstrated that it is important to describe where to start, i.e. what can be taken for granted.
You can also see from the discussion above, that there are dozens of very different proofs. Each one uses a different technique from a different mathematical field. This is why it is so important to describe the starting point of a possible proof, in this case more than in any other.