MHB Proving the integer that p is even and its square is even as well

AI Thread Summary
To prove that an integer p is even if and only if its square p^2 is even, two implications must be demonstrated. First, if p is even (p = 2m), then squaring it results in p^2 = 4m^2, which is even. Conversely, if p^2 is even, assuming p is odd (p = 2n + 1) leads to p^2 = 4n^2 + 4n + 1, which is odd, creating a contradiction. Therefore, both implications confirm that p is even if and only if p^2 is even. The proof is validated as correct.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,I would like some help to get start with a proof. A problem states, "if p is an integer, show that p is even iff p^2 is even."I know that p is the an integer.

Let p be an integer.

$p=2m$, where m is an integer.Thank you for your help

CBarker
 
Mathematics news on Phys.org
To show that the integer $p$ is even iff $p^2$ is even, we have to show the following two implications:
  1. Let $p \in \mathbb{Z}$. If $p$ is even, then $p^2$ is even.
  2. Let $p \in \mathbb{Z}$. If $p^2$ is even, then $p$ is even.

To show the first one we do the following:

$p$ is an even integer, so $p=2m$, for some $m \in \mathbb{Z}$.
Squaring both sides we get $p^2=(2m)^2=4m^2=2(2m^2)$.
Since $m$ is an integer, we have that $2m^2$ is also an integer.
So, $p^2=2n$, with $n=2m^2 \in \mathbb{Z}$.
So, $p^2$ is even. Can you continue and show the second implication?
 
P is not even. If p is not even, then it is odd; therefore there exists an integer n such that
$p=2n+1$
${p}^{2}={\left(2n+1\right)}^{2}\implies p^2=4n^2+4n+1$
$p^2=2\left(2n^2+2n\right)+1$
$p^2=2k+1$, where $k=2n^2+2n$ is some integer.
${p}^{2}$ is odd, contrary to the hypothesis. Since p is not even, it leads to a contradiction. p is even. QED

Is it correct?
 
Last edited:
It is correct! (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top