Proving the Normality of Inner Automorphism Group in Group Theory

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Group
Click For Summary

Discussion Overview

The discussion revolves around proving that the inner automorphism group, denoted as $\text{Inn}(G)$, is a normal subgroup of the automorphism group $\text{Aut}(G)$ for any group $G$. Participants explore the definitions and properties of inner automorphisms and the requirements for normality in group theory.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants define inner automorphisms as the set $\text{Inn}(G)=\{\phi_g\mid g\in G\}$, where $\phi_g(x) = g^{-1}xg$.
  • There is a proposal to show that $\text{Inn}(G)$ is normal in $\text{Aut}(G)$ by demonstrating that $h\phi_gh^{-1} \in \text{Inn}(G)$ for all $h \in \text{Aut}(G)$ and $\phi_g \in \text{Inn}(G}$.
  • One participant corrects another by clarifying that to show a subgroup is normal, it is sufficient to show that conjugates of elements remain in the subgroup, rather than requiring them to be equal to the original elements.
  • Another participant suggests using a different notation for automorphisms to avoid confusion with group elements.
  • Participants discuss the implications of the homomorphic property of automorphisms, specifically that $\psi(g^{-1}) = [\psi(g)]^{-1}$.
  • There is a discussion on whether the equivalence $\psi\phi_g\psi^{-1}(x) = \phi_{\psi(g)}$ holds because $x$ is arbitrary.

Areas of Agreement / Disagreement

Participants generally agree on the definitions and properties of inner automorphisms and the requirements for normality, but there are differing views on the clarity of notation and the implications of certain steps in the proof. The discussion remains unresolved on some technical details and notations.

Contextual Notes

Some participants express uncertainty about the implications of certain properties of homomorphisms and the notation used in the discussion. There are also unresolved questions regarding the equivalence of certain expressions in the context of the proof.

Who May Find This Useful

This discussion may be useful for students and practitioners of group theory, particularly those interested in the properties of automorphism groups and the concept of normal subgroups.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show that $\text{Inn}(G)\trianglelefteq\text{Aut}(G)$ for each group $G$.

We have that the inner automorphisms of $G$ is the following set $\text{Inn}(G)=\{\phi_g\mid g\in G\}$ where $\phi_g$ is an automorphism of $G$ and it is defined as follows: $$\phi_g : G\rightarrow G \\ x\mapsto x^g=g^{-1}xg$$

To show that $\text{Inn}(G)$ is an normal subgroup of $\text{Aut}(G)$ we have to show that $$h\phi_gh^{-1}=\phi_g\in \text{Inn}(G), \forall h\in \text{ Aut}(G) \text{ and } \forall \phi_g\in \text{Inn}(G)$$

We have the following:
$$h\phi_gh^{-1}(x)=h(\phi_g (h^{-1}(x)))=h(g^{-1}h^{-1}(x)g)$$
Since $h$ is an homomorphism we have that $$h(g^{-1}h^{-1}(x)g)=h(g^{-1})h(h^{-1}(x))h(g)=h(g^{-1})xh(g)$$

Is everything correct so far? (Wondering)

How could we continue? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to show that $\text{Inn}(G)\trianglelefteq\text{Aut}(G)$ for each group $G$.

We have that the inner automorphisms of $G$ is the following set $\text{Inn}(G)=\{\phi_g\mid g\in G\}$ where $\phi_g$ is an automorphism of $G$ and it is defined as follows: $$\phi_g : G\rightarrow G \\ x\mapsto x^g=g^{-1}xg$$

To show that $\text{Inn}(G)$ is an normal subgroup of $\text{Aut}(G)$ we have to show that $$h\phi_gh^{-1}=\phi_g\in \text{Inn}(G), \forall h\in \text{ Aut}(G) \text{ and } \forall \phi_g\in \text{Inn}(G)$$

No, that is incorrect. In general, to show a group $N$ is normal in a group $G$, we need to show that:

$gng^{-1} \in N$ for any $g \in G$, and $n \in N$.

This is *not* the same as saying $gng^{-1} = n$. Your are confusing *normalizing* with *centralizing*. We only require conjugates to again be in $N$, we do not require conjugation FIXES elements of $N$.

We have the following:
$$h\phi_gh^{-1}(x)=h(\phi_g (h^{-1}(x)))=h(g^{-1}h^{-1}(x)g)$$
Since $h$ is an homomorphism we have that $$h(g^{-1}h^{-1}(x)g)=h(g^{-1})h(h^{-1}(x))h(g)=h(g^{-1})xh(g)$$

Is everything correct so far? (Wondering)

How could we continue? (Wondering)

Personally, I wouldn't use $h$ to denote an automorphism since it might get confused with an ELEMENT of $G$.

So let $\psi \in \text{Aut}(G)$.

We want to show that $\psi\phi_g\psi^{-1}$ is an inner automorphism, in other words we need to produce some $a \in G$ such that:

$\psi\phi_g\psi^{-1} = \phi_a$.

Starting with some arbitrary $x \in G$ is a good idea, however:

$\psi\phi_g\psi^{-1}(x) = \psi(\phi_g(\psi^{-1}(x))) = \psi(g^{-1}(\psi^{-1}(x))g)$

$= \psi(g^{-1})\psi(\psi^{-1}(x))\psi(g)$

Here, we catch a break-the middle factor in our 3-fold product simplifies:

$\psi(\psi^{-1}(x)) = x$, so we have:

$= \psi(g^{-1})x\psi(g)$

Now, since $\psi$ is a homomorphism, $\psi(g^{-1}) = [\psi(g)]^{-1}$, and thus we have:

$= [\psi(g)]^{-1}x\psi(g)$, which suggests we choose $a = \psi(g)$, that is:

$\psi\phi_g\psi^{-1} = \phi_a$, and $\phi_a \in \text{Inn}(G)$.
 
Deveno said:
In general, to show a group $N$ is normal in a group $G$, we need to show that:

$gng^{-1} \in N$ for any $g \in G$, and $n \in N$.

This is *not* the same as saying $gng^{-1} = n$. Your are confusing *normalizing* with *centralizing*. We only require conjugates to again be in $N$, we do not require conjugation FIXES elements of $N$.
Personally, I wouldn't use $h$ to denote an automorphism since it might get confused with an ELEMENT of $G$.

So let $\psi \in \text{Aut}(G)$.

We want to show that $\psi\phi_g\psi^{-1}$ is an inner automorphism, in other words we need to produce some $a \in G$ such that:

$\psi\phi_g\psi^{-1} = \phi_a$.

Ah ok... I see... (Thinking)
Deveno said:
since $\psi$ is a homomorphism, $\psi(g^{-1}) = [\psi(g)]^{-1}$

Why does this stand? (Wondering)
 
It suffices to show that:

$\psi(g^{-1})\psi(g) = e_G$.

But $\psi$ is a homomorphism, so:

$\psi(g^{-1})\psi(g) = \psi(g^{-1}g) = \psi(e_G)$.

Now, we just have to show that $\psi(e_G) = e_G$.

$\psi$ is bijective, so given any $x \in G$, we have $x = \psi(y)$ for some $y \in G$.

Hence $x\psi(e_G) = \psi(y)\psi(e_G) = \psi(ye_G) = \psi(y) = x$, and:

$\psi(e_G)x =\psi(e_G)\psi(y) = \psi(e_Gy) = \psi(y) = x$.

Since $e_G$ is the UNIQUE element of $G$ such that:

$xe_G = e_Gx = x$, for all $x \in G$, we conclude $\psi(e_G) = e_G$, QED.
 
Deveno said:
It suffices to show that:

$\psi(g^{-1})\psi(g) = e_G$.

But $\psi$ is a homomorphism, so:

$\psi(g^{-1})\psi(g) = \psi(g^{-1}g) = \psi(e_G)$.

Now, we just have to show that $\psi(e_G) = e_G$.

$\psi$ is bijective, so given any $x \in G$, we have $x = \psi(y)$ for some $y \in G$.

Hence $x\psi(e_G) = \psi(y)\psi(e_G) = \psi(ye_G) = \psi(y) = x$, and:

$\psi(e_G)x =\psi(e_G)\psi(y) = \psi(e_Gy) = \psi(y) = x$.

Since $e_G$ is the UNIQUE element of $G$ such that:

$xe_G = e_Gx = x$, for all $x \in G$, we conclude $\psi(e_G) = e_G$, QED.

I understand! (Nerd)
Deveno said:
Starting with some arbitrary $x \in G$ is a good idea, however:

$\psi\phi_g\psi^{-1}(x) = \psi(\phi_g(\psi^{-1}(x))) = \psi(g^{-1}(\psi^{-1}(x))g)$

$= \psi(g^{-1})\psi(\psi^{-1}(x))\psi(g)$

Here, we catch a break-the middle factor in our 3-fold product simplifies:

$\psi(\psi^{-1}(x)) = x$, so we have:

$= \psi(g^{-1})x\psi(g)$

Now, since $\psi$ is a homomorphism, $\psi(g^{-1}) = [\psi(g)]^{-1}$, and thus we have:

$= [\psi(g)]^{-1}x\psi(g)$, which suggests we choose $a = \psi(g)$, that is:

$\psi\phi_g\psi^{-1} = \phi_a$, and $\phi_a \in \text{Inn}(G)$.

We have shown that
$$\psi\phi_g\psi^{-1}(x)=[\psi(g)]^{-1}x\psi(g)=\phi_{\psi (g)}$$

Is this equivalent to $$\psi\phi_g\psi^{-1} = \phi_{\psi (g)}$$ ? (Wondering)

Does it stand because $x$ is arbitrary? (Wondering)
 
mathmari said:
I understand! (Nerd)


We have shown that
$$\psi\phi_g\psi^{-1}(x)=[\psi(g)]^{-1}x\psi(g)=\phi_{\psi (g)}$$

Is this equivalent to $$\psi\phi_g\psi^{-1} = \phi_{\psi (g)}$$ ? (Wondering)

Does it stand because $x$ is arbitrary? (Wondering)

Yes, and yes.
 
Deveno said:
Yes, and yes.

Nice... Thank you very much! (Smile)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
733
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K