Proving the Open Mapping Theorem for Continuous Functions on Complex Numbers

Click For Summary

Homework Help Overview

The discussion revolves around proving the Open Mapping Theorem for continuous functions defined on the complex numbers. The original poster presents a scenario where a continuous function \( f: \mathbb{C} \rightarrow \mathbb{C} \) has the property that \( |f(\mathbb{C})| \rightarrow \infty \) as \( |z| \rightarrow \infty \) and that \( f(\mathbb{C}) \) is an open set. The goal is to show that \( f(\mathbb{C}) = \mathbb{C} \).

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore a proof by contradiction, questioning the implications of the boundary of \( f(\mathbb{C}) \) being non-empty. They discuss the use of Bolzano-Weierstrauss and the continuity of \( f \) to derive properties of sequences approaching boundary points.

Discussion Status

Participants are actively engaging with the problem, raising questions about the implications of their assumptions and the definitions involved. Some have suggested that the boundedness of sequences is crucial to the argument, while others are clarifying the relationship between open sets and their boundaries.

Contextual Notes

There is an emphasis on understanding the properties of open and closed sets in the context of complex analysis, as well as the implications of continuity in the proof structure. Participants are also considering the definitions of limit points and compactness in their reasoning.

DeadOriginal
Messages
274
Reaction score
2

Homework Statement


Let a continuous function ##f:\mathbb{C}\rightarrow\mathbb{C}## satisfy ##|f(\mathbb{C})|\rightarrow\infty## as ##|z|\rightarrow\infty## and let ##f(\mathbb{C})## be an open set. Then ##f(\mathbb{C})=\mathbb{C}##.

The Attempt at a Solution


Suppose for contradiction that ##G=f(\mathbb{C})\not=\mathbb{C}##. Then ##G\subset\mathbb{C}## so ##\partial G\cap\mathbb{C}\not=\emptyset##. (This fact was proved in class.)

The professor gave a hint that I should be using Bolzano-Weierstrauss and the fact that if ##f## is a continuous function and ##z_{n}\rightarrow z## then ##f(z_{n})\rightarrow f(z)##. I started by contradiction because that was the hint in the book but I can't see how to incorporate the professor's hint.
 
Physics news on Phys.org
DeadOriginal said:

Homework Statement


Let a continuous function ##f:\mathbb{C}\rightarrow\mathbb{C}## satisfy ##|f(\mathbb{C})|\rightarrow\infty## as ##|z|\rightarrow\infty## and let ##f(\mathbb{C})## be an open set. Then ##f(\mathbb{C})=\mathbb{C}##.

The Attempt at a Solution


Suppose for contradiction that ##G=f(\mathbb{C})\not=\mathbb{C}##. Then ##G\subset\mathbb{C}## so ##\partial G\cap\mathbb{C}\not=\emptyset##. (This fact was proved in class.)

The professor gave a hint that I should be using Bolzano-Weierstrauss and the fact that if ##f## is a continuous function and ##z_{n}\rightarrow z## then ##f(z_{n})\rightarrow f(z)##. I started by contradiction because that was the hint in the book but I can't see how to incorporate the professor's hint.

Ok, suppose the boundary of ##f(\mathbb{C})## is not empty. Then pick a point ##z_0## in the boundary. Then there is a sequence ##z_n## such that ##f(z_n) \rightarrow z_0##, right? Now can you see that ##|f(z)|\rightarrow\infty## as ##|z|\rightarrow\infty## means ##z_n## must be a bounded sequence? Apply Bolzano-Weierstrass from there.
 
Dick said:
Ok, suppose the boundary of ##f(\mathbb{C})## is not empty. Then pick a point ##z_0## in the boundary. Then there is a sequence ##z_n## such that ##f(z_n) \rightarrow z_0##, right? Now can you see that ##|f(z)|\rightarrow\infty## as ##|z|\rightarrow\infty## means ##z_n## must be a bounded sequence? Apply Bolzano-Weierstrass from there.

By Bolzano-Weierstrauss, there exists a convergent subsequence of ##z_{n}##,##z_{n_{k}}## which converges to some ##z\in\mathbb{C}##. Then since ##f## is continuous, ##f(z_{n_{k}})\rightarrow f(z)=z_{0}##.

I am not sure how to proceed. I keep thinking that the goal is to derive a contradiction by showing that ##\partial G\cup\mathbb{C}=\emptyset##. I think the problem is that I can't picture what I am trying to show in my head. How would you recommend going about picturing this?
 
Suppose x is a complex number, and not in f(C). Let M > |x|. Then there exists N such that if |z| > N, then |f(z)| > M. The set {y: |y| ≤ N} is compact.

Edit: x is either a limit point of f(C), or it isn't. If it's not, choose M so that the open ball with radius M centered at (0,0) contains the closure of the open ball with radius r centered at x, such that every open ball centered at x with radius greater than r contains a point in f(C), and the open ball with radius r centered at x contains no points in f(C).
 
Last edited:
DeadOriginal said:
By Bolzano-Weierstrauss, there exists a convergent subsequence of ##z_{n}##,##z_{n_{k}}## which converges to some ##z\in\mathbb{C}##. Then since ##f## is continuous, ##f(z_{n_{k}})\rightarrow f(z)=z_{0}##.

I am not sure how to proceed. I keep thinking that the goal is to derive a contradiction by showing that ##\partial G\cup\mathbb{C}=\emptyset##. I think the problem is that I can't picture what I am trying to show in my head. How would you recommend going about picturing this?

##f(z)=z_0## mean ##z_0## is in ##f(\mathbb{C})##. Can an element of an open set also belong to the boundary? Think about definitions.
 
Ah! Then since ##z_{0}## is contained in ##f(\mathbb{C})##, this is a contradiction because ##G## does not contain its boundary. If it did then ##G## would also have to be closed and the only sets which are both open and closed in ##\mathbb{C}## are ##\emptyset## and ##\mathbb{C}## but since ##G## contains ##z_{0}##, ##G## must be the entirety of ##\mathbb{C}##.
 
DeadOriginal said:
Ah! Then since ##z_{0}## is contained in ##f(\mathbb{C})##, this is a contradiction because ##G## does not contain its boundary. If it did then ##G## would also have to be closed and the only sets which are both open and closed in ##\mathbb{C}## are ##\emptyset## and ##\mathbb{C}## but since ##G## contains ##z_{0}##, ##G## must be the entirety of ##\mathbb{C}##.

Yes, that's it. The real trick is the argument that the ##z_n## must be bounded. That's how you use the limit property.
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K