MHB Proving the Planarity of a Quadrilateral using Vector Algebra

Click For Summary
The discussion revolves around proving the planarity of a quadrilateral using vector algebra. The initial problem requires demonstrating that a specific vector equation holds true for non-coplanar vectors. Participants suggest utilizing Lagrange's formula to manipulate the vector expressions, leading to a successful proof of the first part. The second part involves establishing that the diagonals of the quadrilateral intersect, which is confirmed through a coplanarity condition of the vectors. Ultimately, the proof confirms that the given vectors represent the vertices of a planar quadrilateral.
Saitama
Messages
4,244
Reaction score
93
Problem:
Consider the non zero vectors $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ such that no three of which are coplanar then prove that $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$. Hence prove that if $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ represent the position vectors of the vertices of a plane quadrilateral then
$$\frac{\left[\vec{a} \vec{b} \vec{d}\right]+\left[\vec{b} \vec{c} \vec{d}\right]}{\left[\vec{a} \vec{b} \vec{c}\right]+\left[\vec{a} \vec{c} \vec{d}\right]}=1$$

Attempt:
I am stuck at the first part of the problem. Looking at the two sides, it seems to me that I somehow need to show $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]$ is same as $\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$. Since
$$\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]=\vec{a}\left(\vec{b}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
and
$$\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]=\vec{b} \left(\vec{a}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
It looks like I need to swap $\vec{a}$ and $\vec{b}$ but that is not a valid step. I don't know how to proceed with the problem. :(

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Hint: Use Lagrange's formula to expand $(\vec a \times\vec b)\times (\vec c\times \vec d) = -(\vec c\times \vec d)\times (\vec a \times\vec b).$
 
Opalg said:
Hint: Use Lagrange's formula to expand $(\vec a \times\vec b)\times (\vec c\times \vec d) = -(\vec c\times \vec d)\times (\vec a \times\vec b).$

Hi Opalg! :)

Let $(\vec a \times\vec b)=\vec{u}$. Then from the Lagrange's formula, I have:
$$\vec{u}\times (\vec{c}\times \vec{d})=\vec{c}(\vec{u}\cdot \vec{d})-\vec{d}(\vec{u}\cdot \vec{c})=\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]-\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$$
Similarly, I have:
$$(\vec c\times \vec d)\times (\vec a \times\vec b)=\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]-\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$$
Since $(\vec a \times\vec b)\times (\vec c\times \vec d) = -(\vec c\times \vec d)\times (\vec a \times\vec b)$, I get:
$$\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]-\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]=-\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$$
$$\Rightarrow \vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$$
which proves the first part.

How to proceed with the second one? :confused:
 
Pranav said:
How to proceed with the second one? :confused:
I was hoping you wouldn't ask that, because I am not sure of the answer. (Thinking)

The condition for a quadrilateral to be planar is that its diagonals should intersect. In terms of the given vectors, this means that there should exist scalars $\lambda,\mu$ such that $\lambda\vec a + (1-\lambda)\vec c = \mu\vec b + (1-\mu)\vec d$. The first part of the problem says that there is some linear combination of $\vec a$ and $\vec c$ that is equal to some linear combination of $\vec b$ and $\vec d$. There must be some way of relating those two pieces of information. (Wondering)
 
Opalg said:
I was hoping you wouldn't ask that, because I am not sure of the answer. (Thinking)

The condition for a quadrilateral to be planar is that its diagonals should intersect. In terms of the given vectors, this means that there should exist scalars $\lambda,\mu$ such that $\lambda\vec a + (1-\lambda)\vec c = \mu\vec b + (1-\mu)\vec d$. The first part of the problem says that there is some linear combination of $\vec a$ and $\vec c$ that is equal to some linear combination of $\vec b$ and $\vec d$. There must be some way of relating those two pieces of information. (Wondering)

Ah but many thanks for the help you provided so far. :)

I figured out the second part but I couldn't use any of the result from the first part. (Thinking)

Here is what I did:

Since the vectors form a plane quadrilateral, the vectors $\vec{b}-\vec{a}$, $\vec{c}-\vec{a}$ and $\vec{d}-\vec{a}$ must be coplanar, hence I have the condition:

$$\left[\vec{b}-\vec{a}\,\,\, \vec{c}-\vec{a}\,\,\, \vec{d}-\vec{a}\right]=0$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot ((\vec{c}-\vec{a})\times (\vec{d}-\vec{a}))=0$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot (\vec{c}\times \vec{d} +\vec{a}\times \vec{c}+\vec{d} \times \vec{a})=0$$
$$\Rightarrow \left[\vec{b} \vec{c} \vec{d}\right]+\left[\vec{b} \vec{a} \vec{c}\right]+\left[\vec{b} \vec{d} \vec{a}\right]-\left[\vec{a} \vec{c} \vec{d}\right]=0$$
I can write $\left[\vec{b} \vec{d} \vec{a}\right]$ as $\left[\vec{a} \vec{b} \vec{d}\right]$ and $\left[\vec{b} \vec{a} \vec{c}\right]$ as $-\left[\vec{a} \vec{b} \vec{c}\right]$. From here, second part can proved now.

Thanks again! :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
993
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
616
  • · Replies 2 ·
Replies
2
Views
2K