Proving the Planarity of a Quadrilateral using Vector Algebra

Click For Summary
SUMMARY

The discussion focuses on proving the planarity of a quadrilateral using vector algebra. The key equation derived is $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$, which establishes a relationship between the vectors representing the vertices of a quadrilateral. The conclusion reached is that if the vectors are coplanar, then the ratio $\frac{\left[\vec{a} \vec{b} \vec{d}\right]+\left[\vec{b} \vec{c} \vec{d}\right]}{\left[\vec{a} \vec{b} \vec{c}\right]+\left[\vec{a} \vec{c} \vec{d}\right]}=1$ holds true, confirming the quadrilateral's planarity.

PREREQUISITES
  • Vector algebra, specifically operations involving cross and dot products.
  • Understanding of coplanarity conditions in vector spaces.
  • Familiarity with Lagrange's formula for vector triple products.
  • Basic knowledge of geometric properties of quadrilaterals.
NEXT STEPS
  • Study Lagrange's formula and its applications in vector algebra.
  • Explore the properties of vector cross products and their geometric interpretations.
  • Learn about coplanarity conditions and their implications in higher dimensions.
  • Investigate the relationship between vector representations and geometric shapes in 3D space.
USEFUL FOR

Mathematicians, physics students, and anyone interested in geometric properties and vector algebra applications in proving theorems related to planar figures.

Saitama
Messages
4,244
Reaction score
93
Problem:
Consider the non zero vectors $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ such that no three of which are coplanar then prove that $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$. Hence prove that if $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ represent the position vectors of the vertices of a plane quadrilateral then
$$\frac{\left[\vec{a} \vec{b} \vec{d}\right]+\left[\vec{b} \vec{c} \vec{d}\right]}{\left[\vec{a} \vec{b} \vec{c}\right]+\left[\vec{a} \vec{c} \vec{d}\right]}=1$$

Attempt:
I am stuck at the first part of the problem. Looking at the two sides, it seems to me that I somehow need to show $\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]$ is same as $\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$. Since
$$\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]=\vec{a}\left(\vec{b}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
and
$$\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]=\vec{b} \left(\vec{a}\cdot \left(\vec{c}\times \vec{d}\right)\right)$$
It looks like I need to swap $\vec{a}$ and $\vec{b}$ but that is not a valid step. I don't know how to proceed with the problem. :(

Any help is appreciated. Thanks!
 
Physics news on Phys.org
Hint: Use Lagrange's formula to expand $(\vec a \times\vec b)\times (\vec c\times \vec d) = -(\vec c\times \vec d)\times (\vec a \times\vec b).$
 
Opalg said:
Hint: Use Lagrange's formula to expand $(\vec a \times\vec b)\times (\vec c\times \vec d) = -(\vec c\times \vec d)\times (\vec a \times\vec b).$

Hi Opalg! :)

Let $(\vec a \times\vec b)=\vec{u}$. Then from the Lagrange's formula, I have:
$$\vec{u}\times (\vec{c}\times \vec{d})=\vec{c}(\vec{u}\cdot \vec{d})-\vec{d}(\vec{u}\cdot \vec{c})=\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]-\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$$
Similarly, I have:
$$(\vec c\times \vec d)\times (\vec a \times\vec b)=\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]-\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$$
Since $(\vec a \times\vec b)\times (\vec c\times \vec d) = -(\vec c\times \vec d)\times (\vec a \times\vec b)$, I get:
$$\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]-\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]=-\vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]$$
$$\Rightarrow \vec{a}\left[\vec{b} \vec{c} \vec{d}\right]+\vec{c}\left[\vec{a} \vec{b} \vec{d}\right]=\vec{b}\left[\vec{a} \vec{c} \vec{d}\right]+\vec{d}\left[\vec{a} \vec{b} \vec{c}\right]$$
which proves the first part.

How to proceed with the second one? :confused:
 
Pranav said:
How to proceed with the second one? :confused:
I was hoping you wouldn't ask that, because I am not sure of the answer. (Thinking)

The condition for a quadrilateral to be planar is that its diagonals should intersect. In terms of the given vectors, this means that there should exist scalars $\lambda,\mu$ such that $\lambda\vec a + (1-\lambda)\vec c = \mu\vec b + (1-\mu)\vec d$. The first part of the problem says that there is some linear combination of $\vec a$ and $\vec c$ that is equal to some linear combination of $\vec b$ and $\vec d$. There must be some way of relating those two pieces of information. (Wondering)
 
Opalg said:
I was hoping you wouldn't ask that, because I am not sure of the answer. (Thinking)

The condition for a quadrilateral to be planar is that its diagonals should intersect. In terms of the given vectors, this means that there should exist scalars $\lambda,\mu$ such that $\lambda\vec a + (1-\lambda)\vec c = \mu\vec b + (1-\mu)\vec d$. The first part of the problem says that there is some linear combination of $\vec a$ and $\vec c$ that is equal to some linear combination of $\vec b$ and $\vec d$. There must be some way of relating those two pieces of information. (Wondering)

Ah but many thanks for the help you provided so far. :)

I figured out the second part but I couldn't use any of the result from the first part. (Thinking)

Here is what I did:

Since the vectors form a plane quadrilateral, the vectors $\vec{b}-\vec{a}$, $\vec{c}-\vec{a}$ and $\vec{d}-\vec{a}$ must be coplanar, hence I have the condition:

$$\left[\vec{b}-\vec{a}\,\,\, \vec{c}-\vec{a}\,\,\, \vec{d}-\vec{a}\right]=0$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot ((\vec{c}-\vec{a})\times (\vec{d}-\vec{a}))=0$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot (\vec{c}\times \vec{d} +\vec{a}\times \vec{c}+\vec{d} \times \vec{a})=0$$
$$\Rightarrow \left[\vec{b} \vec{c} \vec{d}\right]+\left[\vec{b} \vec{a} \vec{c}\right]+\left[\vec{b} \vec{d} \vec{a}\right]-\left[\vec{a} \vec{c} \vec{d}\right]=0$$
I can write $\left[\vec{b} \vec{d} \vec{a}\right]$ as $\left[\vec{a} \vec{b} \vec{d}\right]$ and $\left[\vec{b} \vec{a} \vec{c}\right]$ as $-\left[\vec{a} \vec{b} \vec{c}\right]$. From here, second part can proved now.

Thanks again! :)
 

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
743