The equation $\tan (3x) = \tan 75^\circ$ has solutions $x=25^\circ,\ 85^\circ,\ 145^\circ$. (The first solution is obvious. For the others, notice that if you add $60^\circ$ to $x$, then $3x$ increases by $180^\circ$ so its tan is unaltered.)
Next, $\tan(3x) = \dfrac{3t-t^3}{1-3t^2}$, where $t = \tan x$. So the equation $\tan (3x) = \tan 75^\circ$ becomes $3t-t^3 = (1-3t^2)\tan 75^\circ$, or $t^3 - 3(\tan 75^\circ)t^2 - 3t +\tan 75^\circ = 0$. The product of the roots of this cubic equation is equal to the negative of the constant term, $-\tan 75^\circ$. But the roots are $\tan25^\circ,\ \tan85^\circ,\ \tan145^\circ$. Therefore $$\tan25^\circ \tan85^\circ \tan145^\circ = -\tan 75^\circ.$$
Now use the relations $\tan(90^\circ - x) = \dfrac1{\tan x}$ and $\tan(90^\circ + x) = -\dfrac1{\tan x}$ to write that as $$\Bigl(\frac1{\tan65^\circ}\Bigr) \tan85^\circ \Bigl(-\frac1{\tan 55^\circ}\Bigr) = -\tan 75^\circ,$$ so that $\tan55^\circ \tan65^\circ \tan75^\circ = \tan 85^\circ$.