Proving Trigonometric Identity: tan 55° * tan 65° * tan 75° = tan 85°

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The trigonometric identity proving that tan 55° * tan 65° * tan 75° = tan 85° was successfully demonstrated by multiple forum members, including MarkFL, Opalg, and Sudharaka. The solutions provided showcased different approaches to arrive at the same conclusion, emphasizing the versatility in trigonometric proofs. This discussion highlights the collaborative nature of problem-solving within the mathematical community.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with angle identities in trigonometry
  • Knowledge of tangent function behavior and values
  • Basic proof techniques in mathematics
NEXT STEPS
  • Study the properties of tangent functions and their relationships
  • Explore trigonometric identities, focusing on angle addition and subtraction
  • Learn about alternative proof methods in trigonometry
  • Investigate the use of graphical representations in proving trigonometric identities
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in trigonometric identities and proof techniques will benefit from this discussion.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Thank you to anemone for this problem!

Prove $$\tan 55^{\circ}\tan 65^{\circ}\tan 75^{\circ}=\tan85^{\circ}$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) Opalg
3) Sudharaka

Thank you again to anemone for this great problem!

Solution (from MarkFL):
Let's begin with the left side:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)$$

Using the product to sum identity for the tangent function:

$$\tan(\alpha)\tan(\beta)=\frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{\cos(\alpha-\beta)-\cos(\alpha+\beta)}$$

we may write:

$$\tan\left(65^{\circ} \right)\tan\left(55^{\circ} \right)=\frac{\cos\left(10^{\circ} \right)-\cos\left(120^{\circ} \right)}{\cos\left(10^{\circ} \right)+\cos\left(120^{\circ} \right)}$$

Given that $$\cos\left(120^{\circ} \right)=-\frac{1}{2}$$ we now have:

$$\tan\left(65^{\circ} \right)\tan\left(55^{\circ} \right)=\frac{\cos\left(10^{\circ} \right)+\frac{1}{2}}{\cos\left(10^{\circ} \right)-\frac{1}{2}}=\frac{2\cos\left(10^{\circ} \right)+1}{2\cos\left(10^{\circ} \right)-1}$$

Hence, we may write:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{2\cos\left(10^{\circ} \right)+1}{2\cos\left(10^{\circ} \right)-1}\cdot\tan\left(75^{\circ} \right)$$

Using the identity:

$$\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$$

we have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\left(2\cos\left(10^{\circ} \right)+1 \right)\sin\left(75^{\circ} \right)}{\left(2\cos\left(10^{\circ} \right)-1 \right)\cos\left(75^{\circ} \right)}$$

Distributing, there results:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{2\sin\left(75^{\circ} \right)\cos\left(10^{\circ} \right)+\sin\left(75^{\circ} \right)}{2\cos\left(75^{\circ} \right)\cos\left(10^{\circ} \right)-\cos\left(75^{\circ} \right)}$$

Using the product-to-sum identity:

$$2\sin(\alpha)\cos(\beta)=\sin(\alpha+\beta)+\sin( \alpha-\beta)$$

we have:

$$2\sin\left(75^{\circ} \right)\cos\left(10^{\circ} \right)=\sin\left(85^{\circ} \right)+\sin\left(65^{\circ} \right)$$

Using the product-to-sum identity:

$$2\cos(\alpha)\cos(\beta)=\cos(\alpha+\beta)+\cos( \alpha-\beta)$$

we have:

$$2\cos\left(75^{\circ} \right)\cos\left(10^{\circ} \right)=\cos\left(85^{\circ} \right)+\cos\left(65^{\circ} \right)$$

And now we may state:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+\sin\left(65^{\circ} \right)+\sin\left(75^{\circ} \right)}{\cos\left(85^{\circ} \right)+\cos\left(65^{\circ} \right)-\cos\left(75^{\circ} \right)}$$

Rearranging, we have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+\sin\left(75^{\circ} \right)+\sin\left(65^{\circ} \right)}{\cos\left(85^{\circ} \right)-\left(\cos\left(75^{\circ} \right)-\cos\left(65^{\circ} \right) \right)}$$

Using the sum-to-product identity:

$$\sin(\alpha)+\sin(\beta)=2\sin\left(\frac{\alpha+ \beta}{2} \right)\cos\left(\frac{\alpha-\beta}{2} \right)$$

we have:

$$\sin\left(75^{\circ} \right)+\sin\left(65^{\circ} \right)=2\sin\left(70^{\circ} \right)\cos\left(5^{\circ} \right)$$

Using the sum-to-product identity:

$$\cos(\alpha)-\cos(\beta)=-2\sin\left(\frac{\alpha+ \beta}{2} \right)\sin\left(\frac{\alpha-\beta}{2} \right)$$

we have:

$$-\left(\cos\left(75^{\circ} \right)-\cos\left(65^{\circ} \right) \right)=2\sin\left(70^{\circ} \right)\sin\left(5^{\circ} \right)$$

Thus, we now have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\cos\left(5^{\circ} \right)}{\cos\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\sin\left(5^{\circ} \right)}$$

Using the co-function identities:

$$\cos(\alpha)=\sin\left(90^{\circ}-\alpha \right)$$

$$\sin(\alpha)=\cos\left(90^{\circ}-\alpha \right)$$

we have:

$$\cos\left(5^{\circ} \right)=\sin\left(85^{\circ} \right)$$

$$\sin\left(5^{\circ} \right)=\cos\left(85^{\circ} \right)$$

and we now may write:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\sin\left(85^{\circ} \right)}{\cos\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\cos\left(85^{\circ} \right)}$$

Factoring, we get:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)\left(1+2\sin\left(70^{\circ} \right) \right)}{\cos\left(85^{\circ} \right)\left(1+2\sin\left(70^{\circ} \right) \right)}$$

Dividing out common factors, we now have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)}{\cos\left(85^{\circ} \right)}$$

Using the identity:

$$\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$$

we have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\tan\left(85^{\circ} \right)$$

Shown as desired.

Alternate solution (from Opalg):
The equation $\tan (3x) = \tan 75^\circ$ has solutions $x=25^\circ,\ 85^\circ,\ 145^\circ$. (The first solution is obvious. For the others, notice that if you add $60^\circ$ to $x$, then $3x$ increases by $180^\circ$ so its tan is unaltered.)

Next, $\tan(3x) = \dfrac{3t-t^3}{1-3t^2}$, where $t = \tan x$. So the equation $\tan (3x) = \tan 75^\circ$ becomes $3t-t^3 = (1-3t^2)\tan 75^\circ$, or $t^3 - 3(\tan 75^\circ)t^2 - 3t +\tan 75^\circ = 0$. The product of the roots of this cubic equation is equal to the negative of the constant term, $-\tan 75^\circ$. But the roots are $\tan25^\circ,\ \tan85^\circ,\ \tan145^\circ$. Therefore $$\tan25^\circ \tan85^\circ \tan145^\circ = -\tan 75^\circ.$$
Now use the relations $\tan(90^\circ - x) = \dfrac1{\tan x}$ and $\tan(90^\circ + x) = -\dfrac1{\tan x}$ to write that as $$\Bigl(\frac1{\tan65^\circ}\Bigr) \tan85^\circ \Bigl(-\frac1{\tan 55^\circ}\Bigr) = -\tan 75^\circ,$$ so that $\tan55^\circ \tan65^\circ \tan75^\circ = \tan 85^\circ$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K