Proving Trigonometric Identity: tan 55° * tan 65° * tan 75° = tan 85°

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The discussion centers around proving the trigonometric identity tan 55° * tan 65° * tan 75° = tan 85°. Members MarkFL and Opalg provided correct solutions to the problem, showcasing different approaches to the proof. The problem was initially posed by anemone, who received appreciation for presenting it. The solutions highlight the relationships between the angles involved and utilize trigonometric properties to establish the identity. Overall, the thread emphasizes collaborative problem-solving in trigonometry.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Thank you to anemone for this problem!

Prove $$\tan 55^{\circ}\tan 65^{\circ}\tan 75^{\circ}=\tan85^{\circ}$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) Opalg
3) Sudharaka

Thank you again to anemone for this great problem!

Solution (from MarkFL):
Let's begin with the left side:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)$$

Using the product to sum identity for the tangent function:

$$\tan(\alpha)\tan(\beta)=\frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{\cos(\alpha-\beta)-\cos(\alpha+\beta)}$$

we may write:

$$\tan\left(65^{\circ} \right)\tan\left(55^{\circ} \right)=\frac{\cos\left(10^{\circ} \right)-\cos\left(120^{\circ} \right)}{\cos\left(10^{\circ} \right)+\cos\left(120^{\circ} \right)}$$

Given that $$\cos\left(120^{\circ} \right)=-\frac{1}{2}$$ we now have:

$$\tan\left(65^{\circ} \right)\tan\left(55^{\circ} \right)=\frac{\cos\left(10^{\circ} \right)+\frac{1}{2}}{\cos\left(10^{\circ} \right)-\frac{1}{2}}=\frac{2\cos\left(10^{\circ} \right)+1}{2\cos\left(10^{\circ} \right)-1}$$

Hence, we may write:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{2\cos\left(10^{\circ} \right)+1}{2\cos\left(10^{\circ} \right)-1}\cdot\tan\left(75^{\circ} \right)$$

Using the identity:

$$\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$$

we have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\left(2\cos\left(10^{\circ} \right)+1 \right)\sin\left(75^{\circ} \right)}{\left(2\cos\left(10^{\circ} \right)-1 \right)\cos\left(75^{\circ} \right)}$$

Distributing, there results:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{2\sin\left(75^{\circ} \right)\cos\left(10^{\circ} \right)+\sin\left(75^{\circ} \right)}{2\cos\left(75^{\circ} \right)\cos\left(10^{\circ} \right)-\cos\left(75^{\circ} \right)}$$

Using the product-to-sum identity:

$$2\sin(\alpha)\cos(\beta)=\sin(\alpha+\beta)+\sin( \alpha-\beta)$$

we have:

$$2\sin\left(75^{\circ} \right)\cos\left(10^{\circ} \right)=\sin\left(85^{\circ} \right)+\sin\left(65^{\circ} \right)$$

Using the product-to-sum identity:

$$2\cos(\alpha)\cos(\beta)=\cos(\alpha+\beta)+\cos( \alpha-\beta)$$

we have:

$$2\cos\left(75^{\circ} \right)\cos\left(10^{\circ} \right)=\cos\left(85^{\circ} \right)+\cos\left(65^{\circ} \right)$$

And now we may state:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+\sin\left(65^{\circ} \right)+\sin\left(75^{\circ} \right)}{\cos\left(85^{\circ} \right)+\cos\left(65^{\circ} \right)-\cos\left(75^{\circ} \right)}$$

Rearranging, we have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+\sin\left(75^{\circ} \right)+\sin\left(65^{\circ} \right)}{\cos\left(85^{\circ} \right)-\left(\cos\left(75^{\circ} \right)-\cos\left(65^{\circ} \right) \right)}$$

Using the sum-to-product identity:

$$\sin(\alpha)+\sin(\beta)=2\sin\left(\frac{\alpha+ \beta}{2} \right)\cos\left(\frac{\alpha-\beta}{2} \right)$$

we have:

$$\sin\left(75^{\circ} \right)+\sin\left(65^{\circ} \right)=2\sin\left(70^{\circ} \right)\cos\left(5^{\circ} \right)$$

Using the sum-to-product identity:

$$\cos(\alpha)-\cos(\beta)=-2\sin\left(\frac{\alpha+ \beta}{2} \right)\sin\left(\frac{\alpha-\beta}{2} \right)$$

we have:

$$-\left(\cos\left(75^{\circ} \right)-\cos\left(65^{\circ} \right) \right)=2\sin\left(70^{\circ} \right)\sin\left(5^{\circ} \right)$$

Thus, we now have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\cos\left(5^{\circ} \right)}{\cos\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\sin\left(5^{\circ} \right)}$$

Using the co-function identities:

$$\cos(\alpha)=\sin\left(90^{\circ}-\alpha \right)$$

$$\sin(\alpha)=\cos\left(90^{\circ}-\alpha \right)$$

we have:

$$\cos\left(5^{\circ} \right)=\sin\left(85^{\circ} \right)$$

$$\sin\left(5^{\circ} \right)=\cos\left(85^{\circ} \right)$$

and we now may write:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\sin\left(85^{\circ} \right)}{\cos\left(85^{\circ} \right)+2\sin\left(70^{\circ} \right)\cos\left(85^{\circ} \right)}$$

Factoring, we get:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)\left(1+2\sin\left(70^{\circ} \right) \right)}{\cos\left(85^{\circ} \right)\left(1+2\sin\left(70^{\circ} \right) \right)}$$

Dividing out common factors, we now have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\frac{\sin\left(85^{\circ} \right)}{\cos\left(85^{\circ} \right)}$$

Using the identity:

$$\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$$

we have:

$$\tan\left(55^{\circ} \right)\tan\left(65^{\circ} \right)\tan\left(75^{\circ} \right)=\tan\left(85^{\circ} \right)$$

Shown as desired.

Alternate solution (from Opalg):
The equation $\tan (3x) = \tan 75^\circ$ has solutions $x=25^\circ,\ 85^\circ,\ 145^\circ$. (The first solution is obvious. For the others, notice that if you add $60^\circ$ to $x$, then $3x$ increases by $180^\circ$ so its tan is unaltered.)

Next, $\tan(3x) = \dfrac{3t-t^3}{1-3t^2}$, where $t = \tan x$. So the equation $\tan (3x) = \tan 75^\circ$ becomes $3t-t^3 = (1-3t^2)\tan 75^\circ$, or $t^3 - 3(\tan 75^\circ)t^2 - 3t +\tan 75^\circ = 0$. The product of the roots of this cubic equation is equal to the negative of the constant term, $-\tan 75^\circ$. But the roots are $\tan25^\circ,\ \tan85^\circ,\ \tan145^\circ$. Therefore $$\tan25^\circ \tan85^\circ \tan145^\circ = -\tan 75^\circ.$$
Now use the relations $\tan(90^\circ - x) = \dfrac1{\tan x}$ and $\tan(90^\circ + x) = -\dfrac1{\tan x}$ to write that as $$\Bigl(\frac1{\tan65^\circ}\Bigr) \tan85^\circ \Bigl(-\frac1{\tan 55^\circ}\Bigr) = -\tan 75^\circ,$$ so that $\tan55^\circ \tan65^\circ \tan75^\circ = \tan 85^\circ$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K