MHB Proving $x-1$ is a Factor of $P(x)$ with Polynomials

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomials
Click For Summary
SUMMARY

The discussion centers on proving that \(x-1\) is a factor of the polynomial \(P(x)\) given the equation \(P(x^5)+xQ(x^5)+x^2R(x^5)=(x^4+x^3+x^2+x+1)S(x)\). By substituting \(x=1\) into the equation, it is established that \(P(1) + Q(1) + R(1) = 0\). This leads to the conclusion that \(P(1) = 0\), confirming that \(x-1\) is indeed a factor of \(P(x)\).

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Knowledge of polynomial factorization
  • Familiarity with the Remainder Theorem
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the Remainder Theorem and its applications in polynomial factorization
  • Explore polynomial identities and their proofs
  • Learn about the implications of roots in polynomial equations
  • Investigate advanced polynomial functions and their behaviors
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial theory and factorization techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $P(x),\,Q(x),\,R(x),\,S(x)$ are polynomials such that $P(x^5)+xQ(x^5)+x^2R(x^5)=(x^4+x^3+x^2+x+1)S(x)$, prove that $x-1$ is a factor of $P(x)$.
 
Mathematics news on Phys.org
Let $P(x)=a_nx^n+\cdots+a_0x^0$ with $a_n\ne 0$. Comparing the coefficients of $x^{n+1}$ on both sides gives $a_n(n-2m)(n-1)=0$, so $n=1$ or $n=2m$.

If $n=1$, one easily verifies that $P(x)=x$ is a solution, while $P(x)=1$ is not. Since the given condition is linear in $P$, this means that the linear solutions are precisely $P(x)=tx$ for $t\in \mathbb{R} $.

Now, assume that $n=2m$. The polynomial $xP(x+1)-(x+1)P(x)=(n-1)a_nx^n+\cdots$ has degree $n$, and therefore it has at least one (possibly complex) root $r$. If $r\ne \{0,\,-1\}$, define $k=\dfrac{P(r)}{r}=\dfrac{P(r+1)}{r+1}$. If $r=0$, let $k=P(1)$. If $r=-1$, let $k=-P(-1)$. We now consider the polynomial $S(x)=P(x)-kx$. It also satisfies (1) because $P(x)$ and $kx$ satisfy it. Additionally, it has the useful property that $r$ and $r+1$ are roots.

Let $A(x)=x^3-mx^2+1$ and $B(x)=x^3+mx^2+1$. Plugging in $x=s$ into (1) implies that

If $s-1$ and $s$ are roots of $S$ and $s$ is not a root of $A$, then $s+1$ is a root of $S$.
If $s$ and $s+1$ are roots of $S$ and $s$ is not a root of $B$, then $s-1$ is a root of $S$.

Let $a\ge 0$ and $b\ge 1$ be such that $r-a,\,r-a+1,\,\cdots, r,\,r+1,\.\cdots,\,r+b-1,\,r+b$ are roots of $S$, while $r-a-1$ and $r+b+1$ are not. The two statements above imply that $r-a$ is a root of $B$ and $r+b$ is a root of $A$.

Since $r-a$ is a root of $B(x)$ and of $A(x+a+b)$, it is also a root of their greatest common divisior $C(x)$ as integer polynomials. If $C(x)$ was a non-trivial divisor of $B(x)$, then $B$ would have a rational root $\alpha$. Since the first and last coefficients of $B$ are 1, $\alpha$ can only be 1 or $-1$, but $B(-1)=m>0$ and $B(1)=m+2>0$ since $n=2m$.

Therefore $B(x)=A(x+a+b)$. Writing $c=a_b\ge 1$, we compute

$0=A(x+c)-B(x)=(3c-2m)x^2+c(3c-2m)x^2+c(3c-2m)x+c^2(c-m)$

Then we must have $3c-2m=c-m=0$, which gives $m=0$, a contradiction. We could conclude that $f(x)=tx$ is the only solution.
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K