Pullback & orthogonal projector

  • Context: Undergrad 
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Orthogonal Projector
Click For Summary
SUMMARY

The discussion centers on the properties of a map ##\phi : M \rightarrow N##, where ##N## has dimension ##n## and ##M## has dimension ##m=n-1##, specifically focusing on the hypersurface ##\Sigma \equiv \phi(M)##. The orthogonal projector is defined as ##{\bot^a}_b \equiv \delta^a_b + n^a n_b##, with ##n## being the unit normal to ##\Sigma##. The participants verify three properties involving vectors and tensors under the push-forward and pull-back operations, concluding that the orthogonal projection holds true for both vectors and tensors. The discussion also touches on the implications of the manifold's nature, particularly in Riemannian versus pseudo-Riemannian contexts.

PREREQUISITES
  • Understanding of differential geometry concepts, particularly manifolds and hypersurfaces.
  • Familiarity with push-forward and pull-back operations in the context of smooth maps.
  • Knowledge of orthogonal projections and their mathematical representation.
  • Basic grasp of tensor algebra, including types of tensors such as ##(0,s)## and ##(r,0)## tensors.
NEXT STEPS
  • Explore the properties of push-forward and pull-back in differential geometry.
  • Study the implications of orthogonal projections in Riemannian and pseudo-Riemannian manifolds.
  • Learn about the multi-linearity of tensors and their applications in geometry.
  • Investigate the role of unit normals in defining hypersurfaces and their geometric significance.
USEFUL FOR

Mathematicians, physicists, and students of differential geometry who are working with manifolds, hypersurfaces, and tensor analysis will benefit from this discussion.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
We have a map ##\phi : M \rightarrow N##, where ##N## has dimension ##n## and ##M## has dimension ##m=n-1##. So we consider the hypersurface ##\Sigma \equiv \phi(M)## picked out by the map. We also have an orthogonal projector, ##{\bot^a}_b \equiv \delta^a_b + n^a n_b##, where ##n## is the unit normal to ##\Sigma##.

The exercise is to just verify that the expected properties hold, i.e. that

(i) for a vector ##V##, that ##\phi_{\star} V = \bot (\phi_{\star} V)##
(ii) for a ##(0,s)## tensor ##\omega##, that ##(\phi^{\star} \omega) = \phi^{\star}(\bot \omega)##
(iii) for a ##(r,0)## tensor ##T##, that ##\phi_{\star} T = \bot(\phi_{\star} T)##

I can reason for (i) - i.e. that since ##V## is the tangent vector to a curve ##\lambda : I \rightarrow M##, and the push-forward curve ##\phi \circ \lambda : I \rightarrow N## must lie completely in ##\Sigma##, so ##\phi_{\star} V## must be tangent to ##\Sigma##. So ##n_b (\phi_{\star} V)^b = 0## and:$${\bot^a}_b (\phi_{\star} V)^b = (\phi_{\star} V)^a + n^a n_b (\phi_{\star} V)^b = (\phi_{\star} V)^a$$For (ii), I'm missing a step or two. I would start just from the basics,\begin{align*}
(\phi^{\star} \omega)(X_1, \dots, X_s) &= \omega(\phi_{\star} X_1, \dots, \phi_{\star} X_s) \\
&= \omega( \bot (\phi_{\star} X_1), \dots, \bot (\phi_{\star} X_s) )
\end{align*}What next? I can't use the same reasoning as before to argue that ##\phi^{\star} \omega## is tangent to ##\Sigma##, because ##\omega## isn't obtained from a push-forward of a curve (it's instead defined by its action on vectors). Any ideas...?
 
Last edited:
Physics news on Phys.org
ergospherical said:
We have a map ##\phi : M \rightarrow N##, where ##N## has dimension ##n## and ##M## has dimension ##m=n-1##. So we consider the hypersurface ##\Sigma \equiv \phi(M)## picked out by the map. We also have an orthogonal projector, ##{\bot^a}_b \equiv \delta^a_b + n^a n_b##, where ##n## is the unit normal to ##\Sigma##.
What kind of manifolds are M and N? In a Riemannian manifold I would expect a minus sign in the orthogonal projection. In a pseudo-Riemannian one I would expect it to depend on the nature of ##n##.

ergospherical said:
The exercise is to just verify that the expected properties hold, i.e. that

(i) for a vector ##V##, that ##\phi_{\star} V = \bot (\phi_{\star} V)##
(ii) for a ##(0,s)## tensor ##\omega##, that ##(\phi^{\star} \omega) = \phi^{\star}(\bot \omega)##
(iii) for a ##(r,0)## tensor ##T##, that ##\phi_{\star} T = \bot(\phi_{\star} T)##

I can reason for (i) - i.e. that since ##V## is the tangent vector to a curve ##\lambda : I \rightarrow M##, and the push-forward curve ##\phi \circ \lambda : I \rightarrow N## must lie completely in ##\Sigma##, so ##\phi_{\star} V## must be tangent to ##\Sigma##. So ##n_b (\phi_{\star} V)^b = 0## and:$${\bot^a}_b (\phi_{\star} V)^b = (\phi_{\star} V)^b + n^a n_b (\phi_{\star} V)^b = (\phi_{\star} V)^b$$
Yes.

ergospherical said:
For (ii), I'm missing a step or two. I would start just from the basics,\begin{align*}
(\phi^{\star} \omega)(X_1, \dots, X_s) &= \omega(\phi_{\star} X_1, \dots, \phi_{\star} X_s) \\
&= \omega( \bot (\phi_{\star} X_1), \dots, \bot (\phi_{\star} X_s) )
\end{align*}What next? I can't use the same reasoning as before to argue that ##\phi^{\star} \omega## is tangent to ##\Sigma##, because ##\omega## isn't obtained from a push-forward of a curve (it's instead defined by its action on vectors). Any ideas...?
For a one-form ##\omega## and a vector ##X## in ##N##, write out ##\omega(\perp X)## on component form. What do you notice? What happens if you do this with (0,s) tensor?
 
You're right that I didn't fully specify the problem - more generally ##{\bot^a}_b = \delta^a_b \pm n^a n_b## where +/- holds for ##\Sigma## space/time-like. In this case I have assumed a sub manifold which is everywhere space like.

r.e. your answer, just considering a one-form for brevity,\begin{align*}
\omega( \bot(\phi_{\star} X)) &= \omega({\bot^a}_b (\phi_{\star} X)^b e_a) \\
&= {\bot^a}_b \omega_a (\phi_{\star} X)^b \\
&= (\bot \omega)_b (\phi_{\star} X)^b \\
&= (\bot{\omega})(\phi_{\star} X) \\
&= \phi^{\star} (\bot \omega)(X)
\end{align*}

And the generalization to an (0,s) tensor is straightforward due to multi linearity. For some reason I was getting confused about setting ##(\bot \omega) \equiv \bot(\omega)##. Obviously that's how it's defined...!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K