I Pullback & orthogonal projector

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
We have a map ##\phi : M \rightarrow N##, where ##N## has dimension ##n## and ##M## has dimension ##m=n-1##. So we consider the hypersurface ##\Sigma \equiv \phi(M)## picked out by the map. We also have an orthogonal projector, ##{\bot^a}_b \equiv \delta^a_b + n^a n_b##, where ##n## is the unit normal to ##\Sigma##.

The exercise is to just verify that the expected properties hold, i.e. that

(i) for a vector ##V##, that ##\phi_{\star} V = \bot (\phi_{\star} V)##
(ii) for a ##(0,s)## tensor ##\omega##, that ##(\phi^{\star} \omega) = \phi^{\star}(\bot \omega)##
(iii) for a ##(r,0)## tensor ##T##, that ##\phi_{\star} T = \bot(\phi_{\star} T)##

I can reason for (i) - i.e. that since ##V## is the tangent vector to a curve ##\lambda : I \rightarrow M##, and the push-forward curve ##\phi \circ \lambda : I \rightarrow N## must lie completely in ##\Sigma##, so ##\phi_{\star} V## must be tangent to ##\Sigma##. So ##n_b (\phi_{\star} V)^b = 0## and:$${\bot^a}_b (\phi_{\star} V)^b = (\phi_{\star} V)^a + n^a n_b (\phi_{\star} V)^b = (\phi_{\star} V)^a$$For (ii), I'm missing a step or two. I would start just from the basics,\begin{align*}
(\phi^{\star} \omega)(X_1, \dots, X_s) &= \omega(\phi_{\star} X_1, \dots, \phi_{\star} X_s) \\
&= \omega( \bot (\phi_{\star} X_1), \dots, \bot (\phi_{\star} X_s) )
\end{align*}What next? I can't use the same reasoning as before to argue that ##\phi^{\star} \omega## is tangent to ##\Sigma##, because ##\omega## isn't obtained from a push-forward of a curve (it's instead defined by its action on vectors). Any ideas...?
 
Last edited:
Physics news on Phys.org
ergospherical said:
We have a map ##\phi : M \rightarrow N##, where ##N## has dimension ##n## and ##M## has dimension ##m=n-1##. So we consider the hypersurface ##\Sigma \equiv \phi(M)## picked out by the map. We also have an orthogonal projector, ##{\bot^a}_b \equiv \delta^a_b + n^a n_b##, where ##n## is the unit normal to ##\Sigma##.
What kind of manifolds are M and N? In a Riemannian manifold I would expect a minus sign in the orthogonal projection. In a pseudo-Riemannian one I would expect it to depend on the nature of ##n##.

ergospherical said:
The exercise is to just verify that the expected properties hold, i.e. that

(i) for a vector ##V##, that ##\phi_{\star} V = \bot (\phi_{\star} V)##
(ii) for a ##(0,s)## tensor ##\omega##, that ##(\phi^{\star} \omega) = \phi^{\star}(\bot \omega)##
(iii) for a ##(r,0)## tensor ##T##, that ##\phi_{\star} T = \bot(\phi_{\star} T)##

I can reason for (i) - i.e. that since ##V## is the tangent vector to a curve ##\lambda : I \rightarrow M##, and the push-forward curve ##\phi \circ \lambda : I \rightarrow N## must lie completely in ##\Sigma##, so ##\phi_{\star} V## must be tangent to ##\Sigma##. So ##n_b (\phi_{\star} V)^b = 0## and:$${\bot^a}_b (\phi_{\star} V)^b = (\phi_{\star} V)^b + n^a n_b (\phi_{\star} V)^b = (\phi_{\star} V)^b$$
Yes.

ergospherical said:
For (ii), I'm missing a step or two. I would start just from the basics,\begin{align*}
(\phi^{\star} \omega)(X_1, \dots, X_s) &= \omega(\phi_{\star} X_1, \dots, \phi_{\star} X_s) \\
&= \omega( \bot (\phi_{\star} X_1), \dots, \bot (\phi_{\star} X_s) )
\end{align*}What next? I can't use the same reasoning as before to argue that ##\phi^{\star} \omega## is tangent to ##\Sigma##, because ##\omega## isn't obtained from a push-forward of a curve (it's instead defined by its action on vectors). Any ideas...?
For a one-form ##\omega## and a vector ##X## in ##N##, write out ##\omega(\perp X)## on component form. What do you notice? What happens if you do this with (0,s) tensor?
 
You're right that I didn't fully specify the problem - more generally ##{\bot^a}_b = \delta^a_b \pm n^a n_b## where +/- holds for ##\Sigma## space/time-like. In this case I have assumed a sub manifold which is everywhere space like.

r.e. your answer, just considering a one-form for brevity,\begin{align*}
\omega( \bot(\phi_{\star} X)) &= \omega({\bot^a}_b (\phi_{\star} X)^b e_a) \\
&= {\bot^a}_b \omega_a (\phi_{\star} X)^b \\
&= (\bot \omega)_b (\phi_{\star} X)^b \\
&= (\bot{\omega})(\phi_{\star} X) \\
&= \phi^{\star} (\bot \omega)(X)
\end{align*}

And the generalization to an (0,s) tensor is straightforward due to multi linearity. For some reason I was getting confused about setting ##(\bot \omega) \equiv \bot(\omega)##. Obviously that's how it's defined...!
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top