Pulling a negative out of a square root

Click For Summary
The discussion clarifies that the operation of taking the square root of negative numbers is not valid when both numbers are negative, as shown by the incorrect manipulation of ##\sqrt{-1}\sqrt{-1}##. However, simplifying a single negative number, like ##\sqrt{-5}##, is valid because it involves separating the negative factor, leading to ##i\sqrt{5}##. The confusion arises from applying the invalid rule for two negatives to a case where only one number is negative. The complex square root can be defined using Euler's formula, allowing for valid manipulations under specific conditions. Ultimately, the relationship ##\sqrt{\alpha\beta} = \sqrt{\alpha}\sqrt{\beta}## holds only if the sum of their arguments is less than π.
Mr Davis 97
Messages
1,461
Reaction score
44
The following is invalid, since the operation is not defined when ##a, b < 0##: ##\sqrt{-1}\sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{(-1)^2} = \sqrt{1} = 1##. This is not correct, because ##ii = -1##. This shows that ##\sqrt{a}\sqrt{b} = \sqrt{ab}## is invalid when ##a, b< 0##.

However, say we have ##\sqrt{-5}##. In order to simplify this, we do the following: ##\sqrt{-5} = \sqrt{(-1)(5)} = \sqrt{-1}\sqrt{5} = i\sqrt{5}##. Why is this a valid manipulation given the previous statement that ##\sqrt{a}\sqrt{b} = \sqrt{ab}## is invalid when ##a, b< 0##?
 
Mathematics news on Phys.org
Mr Davis 97 said:
The following is invalid, since the operation is not defined when ##a, b < 0##: ##\sqrt{-1}\sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{(-1)^2} = \sqrt{1} = 1##. This is not correct, because ##ii = -1##. This shows that ##\sqrt{a}\sqrt{b} = \sqrt{ab}## is invalid when ##a, b< 0##.

However, say we have ##\sqrt{-5}##. In order to simplify this, we do the following: ##\sqrt{-5} = \sqrt{(-1)(5)} = \sqrt{-1}\sqrt{5} = i\sqrt{5}##. Why is this a valid manipulation given the previous statement that ##\sqrt{a}\sqrt{b} = \sqrt{ab}## is invalid when ##a, b< 0##?
You are applying a criterion where a and b are both less than zero to a situation where only one of them is less than zero. I don't see why you would expect it to apply.
 
  • Like
Likes Mr Davis 97
In my math book (1971 :smile:) the range of the complex square root function is ##-{1\over 2} \pi \lt \arg {\bf z} \le {1\over 2} \pi ##.

With the range of ##\phi = \arg {\bf z} ## : ##- \pi \lt \phi \le \pi ##, and using euler ## \ {\bf z} \equiv |{\bf z}| e^{i\phi} ## we can now define $$ \ \sqrt {\bf z} \equiv\; \sqrt{|{\bf z}|} \; e^{i {\phi\over 2} } $$
With this definition of the complex square root you can see that ##\sqrt {\bf \alpha\beta} = \sqrt {\bf \alpha} \sqrt {\bf \beta} ## only holds if ## \ |\arg {\bf \alpha} + \arg {\bf \beta} | < \pi ##

Check out the euler formula, de moivre theorem.
 
  • Like
Likes Mr Davis 97
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
13
Views
3K