MHB Pythagorean Theorem: Unexpected Finding

Angel11
Messages
11
Reaction score
0
Hello, today i was playing around with the pythagorean theorem and found out something that i can't really explaing or atleast explain it with probably a false answer. So i was putting every possible combination with the max digit of 10. For example 1^2+1^2=\sqrt{2}, 1^2+2^2=\sqrt{5}... 10^2+1^2=\sqrt{101},10^2+2^2=\sqrt{104}. And then i found out that the square roots of the resolts are increasing by 3,5,7,9,11 and then i found out that those number are increasing by 2. so something like "1^2+2^2=\sqrt{(1^2+1^2)}+\sqrt{3} and then 1^2+3^2=\sqrt{(1^2+2^2)}+\sqrt{5}" so any idea how it works? my guess is WAY off i thought about it more and it is awful so i would appreciate anyones response.
 
Mathematics news on Phys.org
If I understand correctly, you have observed for example:

$$1^2+0^2=1$$

$$1^2+1^2=2$$

$$1^2+2^2=5$$

$$1^2+3^2=10$$

And you've seen that the difference between successive equations are the sequence of odd natural numbers. Let's look at the difference between two successive equations in general:

$$1^2+n^2=n^2+1$$

$$1^2+(n+1)^2=n^2+2n+2$$

What do we get when we subtract the former from the latter?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
8
Views
3K
Replies
2
Views
1K
Replies
2
Views
1K
2
Replies
78
Views
6K
Replies
4
Views
10K
Back
Top