(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

You have spinors that you designed in a computer algebra system. You’re trying to verify Casimir’s trace-trick for a single anti-spinor fermion-line...which you don’t understand all that well. You successfully verify the trace to be equal to:

[tex]{\mathop{\rm Tr}\nolimits} \left( {{\gamma _\mu }(pslas{h_{v'}} - {m_{v'}}){\gamma _0}{{({\gamma ^\mu })}^\dag }{\gamma _0}(pslas{h_\nu } - {m_\nu })} \right) = 4\left( {{{({p_{\nu '}})}^\mu }{{({p_\nu })}^\nu } + {{({p_\nu })}^\mu }{{({p_{\nu '}})}^\nu } + {g^{\mu \nu }}({m^2} - {p_{\nu '}} \bullet {p_\nu })} \right)[/tex]

…which is presented in one of Griffiths’s examples for, again, a fermion line (I think in Griffiths’s example it’s electron/muon scattering). Due to your success of verifying the trace: you feel pretty OK: “maybe my trace is correct as-coded”.

But: that sum over spins is hostilely-problematic. Your code simply returns incorrect results. Which brings me to my question: can you check all my code for the problem? Kidding. Actually: my question is: I suspect I may be expanding the sum incorrectly, which means my problem is not “code” but “physics-understanding”. Is the following expansion correct? (see "Attempt...")

2. Relevant equations

Casimir’s trick, appearing in Griffiths “Intro to Elementary Particles”, is as follows:

[tex]{\frac{1}{4}\sum\limits_{ \pm {\textstyle{1 \over 2}}, \pm {\textstyle{1 \over 2}}} {\left( {\bar v{\gamma _\mu }v'} \right)\left( {\bar v'{\gamma _0}{{({\gamma ^\mu })}^\dag }{\gamma _0}v} \right)} = {\mathop{\rm Tr}\nolimits} \left( {{\gamma _\mu }(pslas{h_{v'}} - {m_{v'}}){\gamma _0}{{({\gamma ^\mu })}^\dag }{\gamma _0}(pslas{h_\nu } - {m_\nu })} \right)}[/tex]

3. The attempt at a solution

[tex]\begin{array}{l}

\sum\limits_{ \pm {\textstyle{1 \over 2}}, \pm {\textstyle{1 \over 2}}} {\left( {{{\bar v}_s}({{{\bf{\vec p}}}_0}){\gamma _0}{{v'}_{s'}}({\bf{\vec p}})} \right)\left( {{{\bar v'}_{s'}}({\bf{\vec p}}){\gamma _0}{{({\gamma ^0})}^\dag }{\gamma _0}{v_s}({{{\bf{\vec p}}}_0})} \right)} = \sum\limits_{ \pm {\textstyle{1 \over 2}}, \pm {\textstyle{1 \over 2}}} {\left( {{{\bar v}_s}({{{\bf{\vec p}}}_0}){\gamma _0}{{v'}_{s'}}({\bf{\vec p}})} \right)\left( {{{\bar v'}_{s'}}({\bf{\vec p}}){\gamma _0}{v_s}({{{\bf{\vec p}}}_0})} \right)} \\

= \left( {{{\bar v}_{ + 1/2}}({{{\bf{\vec p}}}_0}){\gamma _0}{{v'}_{ + 1/2}}({\bf{\vec p}})} \right)\left( {{{\bar v'}_{ + 1/2}}({\bf{\vec p}}){\gamma _0}{v_{ + 1/2}}({{{\bf{\vec p}}}_0})} \right) + \left( {{{\bar v}_{ + 1/2}}({{{\bf{\vec p}}}_0}){\gamma _0}{{v'}_{ - 1/2}}({\bf{\vec p}})} \right)\left( {{{\bar v'}_{ - 1/2}}({\bf{\vec p}}){\gamma _0}{v_{ + 1/2}}({{{\bf{\vec p}}}_0})} \right) \\

+ \left( {{{\bar v}_{ - 1/2}}({{{\bf{\vec p}}}_0}){\gamma _0}{{v'}_{ + 1/2}}({\bf{\vec p}})} \right)\left( {{{\bar v'}_{ + 1/2}}({\bf{\vec p}}){\gamma _0}{v_{ - 1/2}}({{{\bf{\vec p}}}_0})} \right) + \left( {{{\bar v}_{ - 1/2}}({{{\bf{\vec p}}}_0}){\gamma _0}{{v'}_{ - 1/2}}({\bf{\vec p}})} \right)\left( {{{\bar v'}_{ - 1/2}}({\bf{\vec p}}){\gamma _0}{v_{ - 1/2}}({{{\bf{\vec p}}}_0})} \right) \\

\end{array}[/tex]

Maybe you need to see the explicit spinors, which are below. If not, please disregard....they may be complicated reading that is for naught.

…in which: (1) primes denote post-collision momentum (in spherical coordinates) (2) no-prime means “before-collision momentum” (my spinor has only z-momentum, which is OK to choose) (3) the “s” subscript means “spin”. That means the following anti-spinors (which represent a neutron, if you want to know):

[tex]\begin{array}{l}

{v_{ + 1/2}}({{{\bf{\vec p}}}_0}) = \left[ {\begin{array}{*{20}{c}}

0 \\

{ - {\textstyle{{{Q_z}} \over {2\sqrt {{\textstyle{1 \over 2}}{E_D} + m} }}}} \\

0 \\

{ - \sqrt {{\textstyle{1 \over 2}}{E_D} + m} } \\

\end{array}} \right]{v_{ - 1/2}}({{{\bf{\vec p}}}_0}) = \left[ {\begin{array}{*{20}{c}}

{ - {\textstyle{{{Q_z}} \over {2\sqrt {{\textstyle{1 \over 2}}{E_D} + m} }}}} \\

0 \\

{\sqrt {{\textstyle{1 \over 2}}{E_D} + m} } \\

0 \\

\end{array}} \right] \\

{{v'}_{ + 1/2}}({\bf{\vec p}}) = \left[ {\begin{array}{*{20}{c}}

{ - {\textstyle{P \over {\sqrt {E + m} }}}{e^{ - {\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} \\

{{\textstyle{P \over {\sqrt {E + m} }}}\cos ({\textstyle{1 \over 2}}\theta )} \\

{\sqrt {E + m} \cdot {e^{ - {\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} \\

{ - \sqrt {E + m} \cdot \cos ({\textstyle{1 \over 2}}\theta )} \\

\end{array}} \right]{{v'}_{ - 1/2}}({\bf{\vec p}}) = \left[ {\begin{array}{*{20}{c}}

{{\textstyle{P \over {\sqrt {E + m} }}}\cos ({\textstyle{1 \over 2}}\theta )} \\

{{\textstyle{P \over {\sqrt {E + m} }}}{e^{{\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} \\

{\sqrt {E + m} \cdot \cos ({\textstyle{1 \over 2}}\theta )} \\

{\sqrt {E + m} \cdot {e^{{\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} \\

\end{array}} \right] \\

{{\bar v}_{ + 1/2}}({{{\bf{\vec p}}}_0}) = \left[ {\begin{array}{*{20}{c}}

0 & { - {\textstyle{{{Q_z}} \over {2\sqrt {{\textstyle{1 \over 2}}{E_D} + m} }}}} & 0 & {\sqrt {{\textstyle{1 \over 2}}{E_D} + m} } \\

\end{array}} \right] \\

{{\bar v}_{ - 1/2}}({{{\bf{\vec p}}}_0}) = \left[ {\begin{array}{*{20}{c}}

{ - {\textstyle{{{Q_z}} \over {2\sqrt {{\textstyle{1 \over 2}}{E_D} + m} }}}} & 0 & { - \sqrt {{\textstyle{1 \over 2}}{E_D} + m} } & 0 \\

\end{array}} \right] \\

{{\bar v'}_{ + 1/2}}({\bf{\vec p}}) = \left[ {\begin{array}{*{20}{c}}

{ - {\textstyle{P \over {\sqrt {E + m} }}}{e^{{\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} & {{\textstyle{P \over {\sqrt {E + m} }}}\cos ({\textstyle{1 \over 2}}\theta )} & { - \sqrt {E + m} \cdot {e^{{\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} & {\sqrt {E + m} \cdot \cos ({\textstyle{1 \over 2}}\theta )} \\

\end{array}} \right] \\

{{\bar v'}_{ - 1/2}}({\bf{\vec p}}) = \left[ {\begin{array}{*{20}{c}}

{{\textstyle{P \over {\sqrt {E + m} }}}\cos ({\textstyle{1 \over 2}}\theta )} & {{\textstyle{P \over {\sqrt {E + m} }}}{e^{ - {\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} & { - \sqrt {E + m} \cdot \cos ({\textstyle{1 \over 2}}\theta )} & { - \sqrt {E + m} \cdot {e^{ - {\bf{i}}\phi }}\sin ({\textstyle{1 \over 2}}\theta )} \\

\end{array}} \right] \\

\end{array}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# QED - correctly expressing a sum over spin-polarizations

**Physics Forums | Science Articles, Homework Help, Discussion**