You don't need to know any topology to START learning functional. Kreysig's book doesn't have topology prerequisites, and it only has to introduce a few concepts from topology. Topology becomes more important with operator algebras because they have different topologies on them that become important.
The idea of using C* algebras is a little weird because they are Banach algebras, which means they have a norm on them, satisfying some condition, just like operators norms do. As soon as you throw in the commutation relations, you can work out that p acts by differentiation on polynomials in x. From that and the properties of Banach algebras, if you assume that x and p are in a Banach algebra, you can show that the natural numbers are bounded (consider [p, x^n]). That's a contradiction. So, a Banach algebra can't tolerate the commutation relations. So, evidently the solution is to exponentiate. But then, you don't have x and p anymore, just their exponentials. So, there's something tricky going on there.
My small mind would prefer to think of x and p as just being in an algebra, rather than a C* algebra because that can tolerate unbounded operators. Essentially, you have recovered Schrodinger's theory to some extent, once you establish that p acts by differention (times - i hbar) on polynomials in x. For the rest, the Weierstrass approximation theorem says any continuous function can be uniformly approximated by polynomials (at least on an interval) and continuous functions are dense in L^2 (the Lebesgue square integrable functions, which is the relevant Hilbert space for QM). Seems to me, it should be something more along those lines, but I guess there are deeper ideas than that.
This bases QM on commutators, because the defining operation for the algebra is the commutator. (Please correct me, if I'm wrong!)
Commutators aren't really defining operations, I would say. They are just operations that are used to express the defining relations of the algebra. You can always take commutators (which comes from the more basic operations of multiplication and addition), but the point is what they are equal to.