QM time independent perturbation theory

  • Thread starter Thread starter Marco99
  • Start date Start date
  • Tags Tags
    Mechanics Quantum
Marco99
Messages
1
Reaction score
0
Homework Statement
Hello everyone,
So I have a QM assignment in which I have a s=1/2 particle with an unperturbed hamiltonian H diagonal in the |l,l_{z}>|s, s_{z}> base of the form H = A*L^2 + B*S_{z} (with 0 < B << A), and a perturbation term H' of the form H'=const * < L | S >, which can be shown to be diagonal in the |l, s; j, j_{z}> base. I am asked to calculate the energy corrections for the three lowest energy levels in the presence of the perturbation, and I applied time independent perturbation theory.
Relevant Equations
None
The lowest two energy level corrections (l=0, s_{z}=-1/2 and l=0, s_{z}=1/2) are easy to work out since the eigenvalues are not degenerate and the unperturbed energy levels also happen to be eigenstates of H'.

However I have three degenerate energy levels for the third eigenvalue of the form |l=1, l_{z}=0, +1, -1>|s=1/2, s_{z}=-1/2>. The l_{z}=-1 case is trivial, since it corresponds to the |l=1, s=1/2; j=3/2, j_{z}=-3/2> state, which is also an eigenstate of H'.

The l_{z}=0 and l_{z}=1 case is less trivial, so I used time independent perturbation theory in the degenerate case to diagonalise the H' matrix in the unperturbed state base |l=1, l_{z}=0, +1>|s=1/2, s_{z}=-1/2>.

The thing is in this base H' is already represented by a diagonal matrix since, calling |n_0}> and |n_1}> the two unperturbed states with l_{z}=0 and l_{z}=1 and expressing these in the |j, j_{z}> base, it happens that the off-diagonal terms <n_0 | H' | n_1> = <n_1 | H' |n_0> = 0, because |j, j_{z}> states with different j_{z} values are orthonormal.

Which means that the unperturbed states |n_0> and |n_1> already correspond to the perturbed eigenstates, which makes no sense since these two are not H' eigenstates at all. What am I missing?
 
Last edited by a moderator:
Physics news on Phys.org
I do not understand the perturbation "H'=const * < L | S >". Did you mean $$H'=\text{(const.)}~ \mathbf L\cdot \mathbf S~~?$$
 
  • Like
Likes Greg Bernhardt
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top