QM time independent perturbation theory

  • Thread starter Thread starter Marco99
  • Start date Start date
  • Tags Tags
    Mechanics Quantum
Marco99
Messages
1
Reaction score
0
Homework Statement
Hello everyone,
So I have a QM assignment in which I have a s=1/2 particle with an unperturbed hamiltonian H diagonal in the |l,l_{z}>|s, s_{z}> base of the form H = A*L^2 + B*S_{z} (with 0 < B << A), and a perturbation term H' of the form H'=const * < L | S >, which can be shown to be diagonal in the |l, s; j, j_{z}> base. I am asked to calculate the energy corrections for the three lowest energy levels in the presence of the perturbation, and I applied time independent perturbation theory.
Relevant Equations
None
The lowest two energy level corrections (l=0, s_{z}=-1/2 and l=0, s_{z}=1/2) are easy to work out since the eigenvalues are not degenerate and the unperturbed energy levels also happen to be eigenstates of H'.

However I have three degenerate energy levels for the third eigenvalue of the form |l=1, l_{z}=0, +1, -1>|s=1/2, s_{z}=-1/2>. The l_{z}=-1 case is trivial, since it corresponds to the |l=1, s=1/2; j=3/2, j_{z}=-3/2> state, which is also an eigenstate of H'.

The l_{z}=0 and l_{z}=1 case is less trivial, so I used time independent perturbation theory in the degenerate case to diagonalise the H' matrix in the unperturbed state base |l=1, l_{z}=0, +1>|s=1/2, s_{z}=-1/2>.

The thing is in this base H' is already represented by a diagonal matrix since, calling |n_0}> and |n_1}> the two unperturbed states with l_{z}=0 and l_{z}=1 and expressing these in the |j, j_{z}> base, it happens that the off-diagonal terms <n_0 | H' | n_1> = <n_1 | H' |n_0> = 0, because |j, j_{z}> states with different j_{z} values are orthonormal.

Which means that the unperturbed states |n_0> and |n_1> already correspond to the perturbed eigenstates, which makes no sense since these two are not H' eigenstates at all. What am I missing?
 
Last edited by a moderator:
Physics news on Phys.org
I do not understand the perturbation "H'=const * < L | S >". Did you mean $$H'=\text{(const.)}~ \mathbf L\cdot \mathbf S~~?$$
 
  • Like
Likes Greg Bernhardt
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top