A Quantifying nonlinearity from data

  • Thread starter Thread starter BillKet
  • Start date Start date
  • Tags Tags
    Data
Click For Summary
The discussion revolves around extracting the non-linear component, f(x), from a function defined as y = ax + b + f(x), where f(x) is significantly smaller than ax and b. The user seeks a method to quantify deviations from linearity using only measured values of x and y. It is suggested to perform linear regression to determine the linear parameters a and b, then analyze the residuals (y - ax - b) to model the non-linearity. Visualizing the data through plotting could also aid in hypothesizing the form of f(x). Ultimately, the focus is on understanding non-linearity rather than the specific values of a and b.
BillKet
Messages
311
Reaction score
30
Hello! I have a function of the form:

$$y = ax + b + f(x)$$
and I can measure experimentally only x and y. I also know that ##f(x)<<ax,b##, where ##f(x)## is some non-linearity in x i.e. it can't be absorbed into the ##ax+b## part (for example ##f(x) = cx^2##), but I don't know its form. Is there a way to extract ##f(x)##, by measuring only ##x## and ##y##? I am basically wondering if I can quantify the deviation of the expression above from linearity and connect that to the value of x. Thank you!
 
Physics news on Phys.org
As a first pass, you could be in a lot of trouble if ##f(x)=x^2+2x+1=(x+1)^2##, which is going to be literally indistinguishable from adding 2 to a, 1 to b, and ##f(x)=x^2##.

That said, it sounds like maybe you don't care, and you are happy to just think of ##f(x)## as ##x^2## in this case. Is that right?
 
Office_Shredder said:
As a first pass, you could be in a lot of trouble if ##f(x)=x^2+2x+1=(x+1)^2##, which is going to be literally indistinguishable from adding 2 to a, 1 to b, and ##f(x)=x^2##.

That said, it sounds like maybe you don't care, and you are happy to just think of ##f(x)## as ##x^2## in this case. Is that right?
Yes! I am fine with redefining a and b if needed (i.e. absorbing those terms you mentioned above). I am purely interested in any deviation from linearity, regardless of the actual value of a and b.
 
And the thing you care about specifically is trying to estimate y given a value of x? Are we assuming your measurements are perfect with no noise?

I think you would start with doing linear regression to get ##y \approx ax+b## for some ##a## and ##b##. Then compute ##y-ax-b##, and attempt to model it with your favorite parameterized function. If you have a specific example, just drawing a plot of that would probably be a good start for guessing the shape of the non linear piece
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
4
Views
3K