- #1
- 5
- 0
I have a technical question and at the time being I can't ask it to a professor. So, I'm here:
If I try to quantize the vector field in the Coulomb gauge (radiation gauge)
[tex] A_0(x)=0,\quad \vec\nabla\cdot\vec A=0. [/tex]
by imposing the equal-time commutation relation
[tex] [A_i(x),E_j(y)]=-i\delta_{ij}\delta(\vec x-\vec y)[/tex]
then I should find
[tex]\partial_i[A_i,E_j]=[\vec\nabla\cdot\vec A,E_j]=0, [/tex]
since [itex] \vec\nabla\cdot\vec A=0, [/itex] which is inconsistent with [itex] \partial_i\delta_{ij}\delta(\vec x-\vec y)\neq 0[/itex].
My question is simply how to take this divergence
[tex]\partial_i[A_i,E_j]=[\vec\nabla\cdot\vec A,E_j] [/tex]
I'm getting
[tex] \partial_i[A_i,E_j]=[\vec\nabla\cdot\vec A,E_j]+A_i\partial_i E_j-(\partial_i E_j)A_i .[/tex]
I must be missing something in the math here. Can anyone help me?
If I try to quantize the vector field in the Coulomb gauge (radiation gauge)
[tex] A_0(x)=0,\quad \vec\nabla\cdot\vec A=0. [/tex]
by imposing the equal-time commutation relation
[tex] [A_i(x),E_j(y)]=-i\delta_{ij}\delta(\vec x-\vec y)[/tex]
then I should find
[tex]\partial_i[A_i,E_j]=[\vec\nabla\cdot\vec A,E_j]=0, [/tex]
since [itex] \vec\nabla\cdot\vec A=0, [/itex] which is inconsistent with [itex] \partial_i\delta_{ij}\delta(\vec x-\vec y)\neq 0[/itex].
My question is simply how to take this divergence
[tex]\partial_i[A_i,E_j]=[\vec\nabla\cdot\vec A,E_j] [/tex]
I'm getting
[tex] \partial_i[A_i,E_j]=[\vec\nabla\cdot\vec A,E_j]+A_i\partial_i E_j-(\partial_i E_j)A_i .[/tex]
I must be missing something in the math here. Can anyone help me?