Quantum Computing: Positive Operators are Hermitian

Click For Summary
SUMMARY

The discussion centers on Exercise 2.24 from Nielsen and Chuang's "Quantum Computation and Quantum Information," which establishes that a positive operator is necessarily Hermitian. The solution demonstrates that any operator \( A \) can be expressed as \( A = B + iC \), where \( B \) and \( C \) are Hermitian operators defined as \( B = \frac{A + A^{\dagger}}{2} \) and \( C = \frac{A - A^{\dagger}}{2i} \). The proof confirms that since \( A \) is positive, \( \langle x|C|x\rangle \) must equal zero, leading to the conclusion that \( A \) is Hermitian.

PREREQUISITES
  • Understanding of positive operators in quantum mechanics
  • Familiarity with Hermitian operators and their properties
  • Knowledge of finite-dimensional Hilbert spaces
  • Basic proficiency in linear algebra and operator theory
NEXT STEPS
  • Study the properties of Hermitian operators in quantum mechanics
  • Explore the implications of positive semidefinite operators
  • Learn about diagonalization of normal operators in finite-dimensional spaces
  • Investigate the role of eigenvalues in quantum mechanics
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers in quantum computing who seek to deepen their understanding of operator theory and its applications in quantum systems.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Exercise 2.24 on page 71 of Nielsen and Chuang's Quantum Computation and Quantum Information asks the reader to show that a positive operator is necessarily Hermitian. There is a hint given; namely, that you first show an arbitrary operator can be written $A=B+iC$, where $B$ and $C$ are Hermitian. N.B., Nielsen and Chuang are pretty much always working in finite-dimensional Hilbert spaces. Recall that a positive operator $A$ is one such that $\langle x|A|x\rangle\ge 0$ for all vectors $|x\rangle$. An Hermitian operator $A$ is one such that $A=A^{\dagger}$. Here is my solution to the problem:

I claim that $A=B+iC$, where
\begin{align*}
B&=\frac{A+A^{\dagger}}{2} \\
C&=\frac{A-A^{\dagger}}{2i}.
\end{align*}
We can easily verify that $A=B+iC$. Note that
\begin{align*}
B^{\dagger}&=\frac{A^{\dagger}+A}{2}=B \\
C^{\dagger}&=-\frac{A^{\dagger}}{2i}+\frac{A}{2i}=C.
\end{align*}
Hence, $B$ and $C$ are both Hermitian. Now we assume that $A$ is positive, and that $B$ and $C$ are defined as above. For a positive operator, we must have $\langle x|A|x\rangle\ge 0$ for all vectors $|x\rangle$. Since $C$ is Hermitian, it is normal, and hence is diagonalizable. That is, it has a representation
$$C=\sum_i \lambda_i|i\rangle\langle i|,$$
where the $\{|i\rangle\}$ is an orthonormal basis of the space $V$. If it is an orthonormal basis, then we can write
$$|x\rangle=\sum_jx_j|j\rangle.$$
Hence,
\begin{align*}
C|x\rangle&=\sum_i \lambda_i|i\rangle\langle i|\sum_jx_j|j\rangle \\
&=\sum_{i,j}\lambda_ix_j|i\rangle\langle i|j\rangle \\
&=\sum_i\lambda_i x_i|i\rangle.
\end{align*}
Since
$$\langle x|=\sum_j x_j^*\langle j|,$$
we have that
\begin{align*}
\langle x|C|x\rangle&=\sum_j x_j^*\langle j|\sum_i\lambda_i x_i|i\rangle \\
&=\sum_{j,i}\lambda_ix_j^*x_i\langle j|i\rangle \\
&=\sum_i\lambda_i|x_i|^2.
\end{align*}
Since $C$ is Hermitian, its eigenvalues are real. Hence, $\langle x|C|x\rangle$ is real. By the same token, $\langle x|B|x\rangle$ is real. In order to be able even to write
$$\langle x|A|x\rangle=\langle x|(B+iC)|x\rangle=\langle x|B|x\rangle+i\langle x|C|x\rangle\ge 0,$$
the portion $\langle x|C|x\rangle$ must be either pure imaginary or zero. It is not pure imaginary. Hence, it must be zero. Therefore, $A$ is Hermitian.
 
Last edited by a moderator:
  • Like
Likes   Reactions: vanhees71
Physics news on Phys.org
You don't need to introduce a basis. Since ##\hat{C}=\hat{C}^{\dagger}## you have
$$\langle x|\hat{C} x \rangle=\langle \hat{C}^{\dagger} x| x\rangle = \langle \hat{C} x|x \rangle=\langle x|\hat{C} x \rangle^* \; \Rightarrow \; \langle x|\hat{C} x \rangle \in \mathbb{R}.$$
Since by assumption ##\hat{A}## is positive semidefinite, from that you must have ##\langle x|\hat{C} x \rangle=0## for all ##|x \rangle \in \mathcal{H}##, and thus ##\hat{C}=0##.
 
  • Like
Likes   Reactions: PeroK and Ackbach

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K