- #1
_Kenny_
- 4
- 1
Hello!
I'm currently making my way through the book "Quantum Field Theory of Point Particles and Strings" and on page 13 they talk are talking about quantization of the classical versions momentum and position. The first part to quantizing these is turning them into operators. The books goes on to say that "to complete the quantization, we must specify quantum conditions for the operators X and P, and that X and P must satisfy [X,P]=i, .
Can anyone give me any insight into what this commutation relationship is saying and why it is the way it is?
Thanks!
Kenny
I'm currently making my way through the book "Quantum Field Theory of Point Particles and Strings" and on page 13 they talk are talking about quantization of the classical versions momentum and position. The first part to quantizing these is turning them into operators. The books goes on to say that "to complete the quantization, we must specify quantum conditions for the operators X and P, and that X and P must satisfy [X,P]=i, .
Can anyone give me any insight into what this commutation relationship is saying and why it is the way it is?
Thanks!
Kenny