# Quantum interpretation and classical-quantum distinction

• I
• DesertFox
Check out this:
https://physics.stackexchange.com/questions/16296/chance-of-macro-tunneling

Or maybe that already has happened in spite of the very, very, very small probability?
Very, very, very small probability is a very, very, very big understatement. The probability is still too close to zero for that. As per the response from the link above:
I'm going to trust that Alexander's interpretation is good and say that the probability is arbitrary as T depends on unknown parameters. The important part is that the double exponent you need to raise T to to get the transmission probability of all of the particles will make any probability less than exactly 1 vanishingly small. If T were 1 in 10, T^10^23 would be 1 in 1 followed by 100 sextillion zeroes. That's a number so gobsmackingly large it gives me a headache to think about it.

mattt and PeroK
Very, very, very small probability is a very, very, very big understatement. The probability is still too close to zero for that.
It's not "very, very, very big understatement", but a turn of speech which is specially designed for the context.

Last edited:
gentzen and Motore
do you think that somebody will see quantum tunnelling of a visible object for sure?

Or maybe that already has happened in spite of the very, very, very small probability?
No and no. The responses you have been getting about this are correct. The evidence is that we have not observed quantum tunnelling of an object large enough for a human to see with the naked eye. However, this evidence tells us nothing useful either way about whether QM is valid for such objects; there are not enough such objects and we have not been observing for long enough for the probability QM predicts for such an event to be large enough to make the fact that we have not observed such an event significant evidence against QM. And "not enough" means not enough by many, many, many orders of magnitude; it's not even close.

mattt and PeroK
It is somehow natural to consider the wavefunction as a reflection of our knowledge of the system (not as a description of the system itself). As far as I know, that view was held by Einstein. He suggested that quantum mechanics is incomplete, since it gives us only an instrumental recipe for calculating the probabilities of outcomes, rather than a description of the underlying state of the system that gives rise to those probabilities. However, it was later "proved" that it is impossible to construct such a description of the underlying state. What exactly is that proof? Can somebody explicate it, please?

there are not enough such objects

It is amazing how we can take that for granted without even bothering to do the numbers.

In other words: Very bold claim; but i don't find it well-grounded at all.

Motore, weirdoguy and PeroK
It is amazing how we can take that for granted without even bothering to do the numbers.
The people who responded to you have done the numbers. Have you? If so, please show your work.

mattt
The people who responded to you have done the numbers. Have you? If so, please show your work.
These people did the numbers regarding all the visible objects that the humankind have had the chance to see tunneling? Please, show me a comment containing such calculation.

All of the answers so far consider what is the very small probability for, let's say, a grain of sand to quantum tunnel and nothing more. That's very different from ALL the visible objects that humankind have seen and that eventually have had any miserable probability to tunnel.

Last edited:
weirdoguy
The people who responded to you have done the numbers. Have you? If so, please show your work.
Although it's not the tunnelling calculation, a tennis ball typically has a mass of ##0.05 \ kg## and if we say that the uncertainty in its speed is ##10 \ m/s##, then according to the Heisenberg UP, the uncertainty in its position is approximately ##10^{-34} \ m##. We can compare this with the diameter of the hydrogen nucleus at about ##1.7 \times 10^{-15} \ m##.

Not only is this calculation absurd, in a way, but anyone who demands such a calculation has shown that their grasp of the scale at which QM applies is non-existent.

These people did the numbers regarding all the visible objects that the humankind have had the chance to see tunneling?
No, they gave you the numbers for one visible object, and the probability for that is so vanishingly small that even multiplying it by the most generous upper bound imaginable for the number of all the visible objects humans have had the chance to see tunnelling still leaves a probability that is much too tiny to matter. You should be able to calculate that for yourself. It is not incumbent on people responding to you to spoon feed you every single piece of information.

If you think the numbers are different, the burden is on you to show your own calculation. Either do that or your thread will be closed since without you showing your own work, or giving a reference to some similar calculation in the literature that supports your claims, your claims are baseless.

mattt, PeroK and weirdoguy
even multiplying it by the most generous upper bound imaginable for the number of all the visible objects humans have had the chance to see tunnelling

It is THAT number that NOBODY considered it in any well-grounded way.

And i don't say if the numbers are DIFFERENT or the SAME. I just claim that nobody focused on that crazy big number. That's all I said. Of course, I can't give reference in the literature for such a claim.

And if closing the thread will give some base to your claims: fine, i am ok with that. However, it will be sad, cause I really like that place.

weirdoguy
The other relevant point is that quantum tunneling tends to take place over barriers in the region of a few nanometres (##10^{-9} \ m##). If the potential barrier were the width of a house brick, say, then even electrons would be unable to tunnel. There's no basis at all on which to scale that up and conclude that a tennis ball could tunnel through a wall, say.

Any tunnelling would be part of the interaction between the surface of the ball and surface of the wall at the molecular level. QM effects would take place on that scale and govern the microscopic interactions. Even those effects have vanishingly small probabilites above molecular scales.

This is why quantum tunneling and quantum uncertainty are just not a thing when it comes to the behaviour of a tennis ball.

pinball1970 and DesertFox
It is THAT number that NOBODY considered it in any well-grounded way.
Then you need to give your number and show how it was calculated and why that calculation makes sense. You have not done so. I told you what would happen in that case, and it has now happened.

Of course, I can't give reference in the literature for such a claim.
In other words, you can't support your claim. Then closing the thread is obviously appropriate.