atyy
Science Advisor
- 15,170
- 3,379
rubi said:I use it like Khrennikov, who uses it as follows: A theory is non-contextual if all observables can be modeled as random variables on one probability space, independent of the experimental setup. Otherwise, it is contextual. Kochen-Specker define non-contextuality for theories defined in the Hilbert space framework. However, if such theories were non-contextual according to KS, then they would also be non-contextual according to Khrennikov, so Khrennikov's definition is in a sense more general, as it allows for theories that are not necessarily modeled in the Hilbert space framework. For example, if a theory would exceed the Tsirelson bound, it would have to be contextual, but couldn't be modeled in a Hilbert space. (However, in general, theories that don't exceed the Tsirelson bound don't need to have a Hilbert space model either. At least I'm not aware of a proof.)
OK, but it doesn't mean that contextuality can save locality. Bell's theorem shows that no local hidden variable theory, contextual or not, is consistent with quantum theory (the usual outs are retrocausation, superdeterminism, many-worlds - but contextuality is not one of them). Khrennikov's out is essentially to redefine "local hidden variable" so that it includes something weird like his suggestion of p-adic probabilities, which may be fine, but it's totally unclear how that would solve the measurement problem. It's a bit similar to consistent histories, whose claim to be local is not in contradiction to Bell's theorem, because it is not a realistic theory.