# Quantum Mechanics: Linear and Circular polarization states

1. Feb 2, 2015

### Robben

1. The problem statement, all variables and given/known data

Evaluate the matrix elements ${\mathbb S}=\left( \begin{array}{cc} \langle x|\mathbb{\hat J}_z|x\rangle& \langle x|\mathbb{\hat J}_z|y\rangle\\ \langle y|\mathbb{\hat J}_z|x\rangle &\langle y|\mathbb{\hat J}_z|y\rangle\end{array}\right)$ by expressing the linear polarization states $|x\rangle$ and $|y\rangle$ in terms of the circular polarization states $|R\rangle$ and $|L\rangle.$

2. Relevant equations

$|R\rangle = \frac{1}{\sqrt{2}}\left(|x\rangle+i|y\rangle\right)$
$|L\rangle = \frac{1}{\sqrt{2}}\left(|x\rangle-i|y\rangle\right)$

3. The attempt at a solution

I worked out $|x\rangle$ and $|y\rangle$ and got:

$|x\rangle=\frac{1}{2}\left(|R\rangle+|L\rangle\right)$
$|y\rangle = \frac{-i}{\sqrt{2}}\left(|R\rangle-|L\rangle\right)$.

To get $\mathbb{S},$ do I just work out:

${\mathbb S}=\left( \begin{array}{cc} \langle x \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid x \rangle & \langle x \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid y \rangle \\ \langle y \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid x \rangle & \langle y \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid y \rangle \end{array}\right) = \left( \begin{array}{cc} \langle x \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid x \rangle & \langle x \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid y \rangle \\ \langle y \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid x \rangle & \langle y \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid y \rangle \end{array}\right) \ ?$

Last edited: Feb 2, 2015
2. Feb 2, 2015

### Goddar

Hi. You need to find out from your coursework what the action of Jz is on |R> and |L>, that's the whole point of using them instead of |x> and |y>...

3. Feb 2, 2015

### Robben

I am not understanding. So what I did was wrong?

The question asks to express $|x\rangle$ and $|y\rangle$ in terms of $|R\rangle$ and $|L\rangle$.

4. Feb 2, 2015

### Goddar

That you did. But then you need to plug these relations in your matrix instead of what you did in the last part, which is what your question was about right?

5. Feb 2, 2015

### Robben

So I did do it correctly and all I have to do is plug in the equations. Thank you!

6. Feb 2, 2015

### Goddar

Yes but then you'll still have to evaluate the matrix elements! And for that you'll need to know what <R| Jz|R> gives, for example...
Good luck.