I Quantum particle's state in momentum eigenfunctions basis

Click For Summary
The quantum state of a spinless particle is represented as a point in the Hilbert space of square-integrable functions defined on R³, where the square-integrable condition ensures that the Lebesgue integral of the function's square is finite. However, momentum eigenfunctions do not satisfy this condition, leading to challenges in their representation. To address this, one can explore concepts like rigged Hilbert spaces or Gelfand triples, which provide a framework for dealing with non-square-integrable states. For particles with spin, the quantum state is defined in a projective Hilbert space, and while wave functions exist, the requirement for square-integrability may differ. The discussion emphasizes the importance of understanding the mathematical foundations of quantum mechanics to navigate these complexities effectively.
cianfa72
Messages
2,879
Reaction score
302
TL;DR
How to express quantum particle's state in momentum eigenfunctions basis considering the fact that momentum eigenfunctions are not square-integrable
Hi, as discussed in this recent thread, for a particle without spin the quantum state of the particle is described by a "point" in the Hilbert space of the (equivalence classes) of ##L^2## square-integrable functions ##|{\psi} \rangle## defined on ##\mathbb R^3##.

The square-integrable condition for complex-valued function ##f## means that its square ##|f|^2## has finite Lebesgue integral on the measurable space ##(\mathbb R^3, \mathcal A)## where ##\mathcal A## is the sigma-algebra of Lebesgue measurable sets (or perhaps simply the Borel sigma algebra ##\mathcal B(\mathbb R^3)##).

That said, consider the eigenfunctions ##|{\psi_k} \rangle## of momentum operator ##\vec{P}##. Now the Lebesgue integral of each of their equivalence classes is not finite.

How do we cope with this ? Thanks.
 
Last edited:
Physics news on Phys.org
  • Like
Likes jbergman and PeroK
cianfa72 said:
The square-integrable condition for complex-valued function ##f## means that its square ##|f|^2## has finite Lebesgue integral on the measurable space ##(\mathbb R^3, \mathcal A)## where ##\mathcal A## is the sigma-algebra of Lebesgue measurable sets (or perhaps simply the Borel sigma algebra ##\mathcal B(\mathbb R^3)##).
From a theoretical point of view which type of sigma-algebra is implicitly implied (Borel or Lebesgue) ?
 
Lebesgue on the domain and Borel on the image i.e. the functions are measurable functions ##f: (\mathbb R^3, \mathcal L) \rightarrow (\mathbb C, \mathcal B)##.
 
martinbn said:
Lebesgue on the domain and Borel on the image i.e. the functions are measurable functions ##f: (\mathbb R^3, \mathcal L) \rightarrow (\mathbb C, \mathcal B)##.
Actually not ##f## itself but complex-valued functions ##f## such that the square ##g=|f|^2## is a measurable function ##g: (\mathbb R^3, \mathcal L) \rightarrow (\mathbb C, \mathcal B)##
 
cianfa72 said:
Actually not ##f## itself but complex-valued functions ##f## such that the square ##g=|f|^2## is a measurable function ##g: (\mathbb R^3, \mathcal L) \rightarrow (\mathbb C, \mathcal B)##
It is the same. Composing a continuous function and a measurable function gives a measurable one.
 
  • Like
Likes PeroK and cianfa72
martinbn said:
It is the same. Composing a continuous function and a measurable function gives a measurable one.
Ah ok, this because the Borel ##\sigma##-algebra on ##\mathbb C## is generated by open sets in ##\mathbb C## and the map ##|\, .|^2 : (\mathbb C, \mathcal B) \rightarrow (\mathbb C, \mathcal B)## is continuous (i.e. the preimage of borel sets are borel sets as well).
 
What about a particle with spin (like the qbit) ? Its quantum state is defined by a point in the projective Hilbert abstract space of dimension 2.

Does exist in this case the concept of wave function, hence the requirement to work with ##L^2## square-integrable functions ?

Edit: perhaps the point is that the Hilbert space for a spin ##1/2## particle is (or it is isomorphic to) the ##\mathbb C^2## Hilbert space (actually the projective line). Hence it is complete under the norm derivated from the standard inner product in ##\mathbb C^2##.
 
Last edited:
cianfa72 said:
TL;DR Summary: How to express quantum particle's state in momentum eigenfunctions basis considering the fact that momentum eigenfunctions are not square-integrable

Hi, as discussed in this recent thread, for a particle without spin the quantum state of the particle is described by a "point" in the Hilbert space of the (equivalence classes) of ##L^2## square-integrable functions ##|{\psi} \rangle## defined on ##\mathbb R^3##.

The square-integrable condition for complex-valued function ##f## means that its square ##|f|^2## has finite Lebesgue integral on the measurable space ##(\mathbb R^3, \mathcal A)## where ##\mathcal A## is the sigma-algebra of Lebesgue measurable sets (or perhaps simply the Borel sigma algebra ##\mathcal B(\mathbb R^3)##).

That said, consider the eigenfunctions ##|{\psi_k} \rangle## of momentum operator ##\vec{P}##. Now the Lebesgue integral of each of their equivalence classes is not finite.

How do we cope with this ? Thanks.
Hall's book Quantum Theory for Mathematicians has the most rigorous analysis of this I have seen if you are really interested.
 
  • #10
In the Hall's book section 3.3 he claims that ##X\psi(x) = x\psi(x)## might fail to be in ##L^2(\mathbb R)##.

However we know that the function ##x## is continuous and ##\psi(x)## is integrable (w.r.t. the Lebesgue integral over the Lebesgue ##\sigma##-algebra over ##\mathbb R##) by hypothesis. Hence ##x\psi(x)## is measurable too.

Perhaps the point is that we know the above Lebesgue integral exists, however we can not say for sure that it is bounded (not ##+\infty##), right?
 
  • #11
Is the equality in your first paragraph an equation, or a definition of operator action?
 
  • #12
dextercioby said:
Is the equality in your first paragraph an equation, or a definition of operator action?
It is a definition (it defines how the operator ##X## acts on state/vector ##\psi(x)##).
 
  • #13
cianfa72 said:
In the Hall's book section 3.3 he claims that ##X\psi(x) = x\psi(x)## might fail to be in ##L^2(\mathbb R)##.

However we know that the function ##x## is continuous and ##\psi(x)## is integrable (w.r.t. the Lebesgue integral over the Lebesgue ##\sigma##-algebra over ##\mathbb R##) by hypothesis. Hence ##x\psi(x)## is measurable too.

Perhaps the point is that we know the above Lebesgue integral exists, however we can not say for sure that it is bounded (not ##+\infty##), right?
Yes, integrable means finite integral. For example ##\frac1{x^2}## is integrable, but when multiplied by ##x## gives you a non integrable one.
 
  • Like
Likes mattt and cianfa72
  • #14
martinbn said:
Yes, integrable means finite integral. For example ##\frac1{x^2}## is integrable, but when multiplied by ##x## gives you a non integrable one.
I was thinking about what happens at infinity. My example isnt great. One should change the function around zero.
 
  • #15
cianfa72 said:
In the Hall's book section 3.3 he claims that ##X\psi(x) = x\psi(x)## might fail to be in ##L^2(\mathbb R)##.

However we know that the function ##x## is continuous and ##\psi(x)## is integrable (w.r.t. the Lebesgue integral over the Lebesgue ##\sigma##-algebra over ##\mathbb R##) by hypothesis. Hence ##x\psi(x)## is measurable too.

Perhaps the point is that we know the above Lebesgue integral exists, however we can not say for sure that it is bounded (not ##+\infty##), right?
##\psi \in L^2(\mathbb R) \rightarrow \int |\psi(x)|^2dx < \infty##. Hall's statement is merely that there exists ##\psi \in L^2(\mathbb R)## such that ##\int |x\psi(x)|^2dx## is not bounded.
 
  • #16
Suppose one deal with a quantum system with position/momentum and spin not entangled. Then the state of system is in the form $$\ket{\psi} \otimes \ket{\chi}$$ and this is a unit vector in the Hilbert tensor product space (i.e. it has norm 1). It follows that the norms of ##\ket{\psi}## and ##\ket{\chi}## considered separately are such that their product is 1, right?
 
  • #17
cianfa72 said:
Suppose one deal with a quantum system with position/momentum and spin not entangled. Then the state of system is in the form $$\ket{\psi} \otimes \ket{\chi}$$ and this is a unit vector in the Hilbert tensor product space (i.e. it has norm 1). It follows that the norms of ##\ket{\psi}## and ##\ket{\chi}## considered separately are such that their product is 1, right?
That's my understanding, yes.
 

Similar threads

  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 29 ·
Replies
29
Views
2K
Replies
1
Views
809
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 35 ·
2
Replies
35
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
11
Views
2K