Quantum phase estimation - Question regarding rewriting the state

Click For Summary

Discussion Overview

The discussion revolves around the interpretation of a notation introduced in quantum phase estimation, specifically the expression involving modular arithmetic in the context of quantum states. Participants explore the implications of using an offset in the state representation and its relevance to the quantum Fourier transform and measurement processes.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant questions the meaning of the notation ##|(b+l)(\text{mod } 2^t)\rangle## and its necessity compared to the basic state ##|l\rangle##.
  • Another participant explains that using the notation with modular arithmetic allows for shifting the labels of the states by a fixed offset ##b##, maintaining the limits of the index.
  • A participant expresses curiosity about the advantage of introducing this notation if it does not change the underlying mathematical equivalence.
  • One participant describes the context of the problem, noting that the offset ##b## arises from measuring a periodic function and that it becomes phase information after applying the Fourier transform.
  • A later reply suggests that the offset ##b## can be interpreted as noise introduced by sampling, which could be relevant in understanding the measurement process.
  • Another participant seeks confirmation on their understanding of the discussion regarding the offset and its implications.

Areas of Agreement / Disagreement

Participants express differing views on the necessity and implications of the offset ##b## in the state representation. While some find it useful for understanding measurement processes, others question its introduction and relevance.

Contextual Notes

The discussion highlights the nuances of modular arithmetic in quantum states and the potential interpretations of offsets in measurements, but does not resolve the underlying questions about the necessity of the new notation.

Peter_Newman
Messages
155
Reaction score
11
In Nielsen and Chuang p.223 we have the following situation:

$$\frac{1}{2^t} \sum\limits_{k,l=0}^{2^t-1} e^{\frac{-2\pi i k l}{2^t}} e^{2 \pi i \varphi k} |l\rangle$$

Which results from applying the inverse quantum Fourier transform to state ##\frac{1}{2^{t/2}} \sum\limits_{k=0}^{2^t-1} e^{-2\pi i \varphi k} |l\rangle##. We have more or less a sum over the basis states ##|l\rangle##. This is clear so far.

Next, the following new notation is then introduced ##|(b+l)(\text{mod } 2^t)\rangle##. Were we know from ##b## that it is an integer in the range from ##0## to ##2^t -1##.

What does this ##b+l## mean exactly, how is this to interpret? Why does one not leave it with the basic state ##|l\rangle##?
 
Last edited:
Physics news on Phys.org
You have computational basis states ##|0\rangle##, ##|1\rangle##, ##|2\rangle##, etc.

Instead of writing ##|2\rangle## you could write ##|1+1\rangle## because ##1+1=2##.

Instead of writing ##|2\rangle## you could write ##|3+7 \pmod{8}\rangle## because ##(3+7) \bmod 8 = 2##.

Get the idea? From that you can see that looking at ##\sum_\ell |b+\ell \pmod{N}\rangle## instead of ##\sum_\ell |\ell\rangle## is shifting the labels of the states over by some fixed offset ##b##, wrapping around just before you get to ##|N\rangle##.
 
  • Like
Likes   Reactions: Peter_Newman
Hello, thank you for the answer!

Yes because of the modular arithmetic one always remains in the "limits" of the index. One could also have added 42 to each state and calculate ##\text{mod } 2^t##, I suppose ;)

But what is the advantage of this? I mean, one does not introduce a new notation, in order to have nothing of it at the end?
 
Ah, it's not a description of a solution it's a description of a problem. When you have a register x that contains a uniform superposition and you measure f(x), where f is a periodic function period p, you are left with a superposition where every p'th state is present... with some uncontrollable offset b. The book is then going to show that when you take the Fourier transform of this register, the offset b becomes purely phase information; the magnitudes of the amplitudes of the superposition don't depend on b. Measuring in the frequency basis avoids the unknown offset problem.

quirk-spectrogram-5-moving.gif

Image is from here: https://algassert.com/post/1718
 
  • Like
Likes   Reactions: Peter_Newman
Thanks for your answer!

So let me understand this correctly. So with the offset ##b## in ##l+b## you are anticipating something at the point (anticipating shor algorithm)? I find problematic that at the point it is not pointed out where the offset comes from and why it occurs. Mathematically this is equivalent whether I write ##\sum_\ell |\ell\rangle## or ##\sum_\ell |b+\ell \pmod{N}\rangle##, the index remains the same. I can only explain this in such a way that one would like to measure ideally ##l##, but this does not always go so that one then "measures around" ##l## with a distance of ##b##.

I take from your article that this offset is caused by the sampling and can be dismissed/interpreted quasi as noise. And exactly this noise is picked up by considering this as offset?! This is a good explanation, which I would have liked to see in the Nielsen as well.
 
Is my reasoning right so far?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K