MHB Question about a rounded rectangle

  • Thread starter Thread starter Opalg
  • Start date Start date
  • Tags Tags
    Rectangle
AI Thread Summary
The discussion focuses on the geometric properties of a rounded rectangle formed by replacing the corners of a rectangle with quadrants of a circle. It explains the relationship between the rectangle's dimensions (length $l$ and width $w$) and the radius $r$ of the circular corners, particularly through trigonometric identities and the application of the Pythagorean theorem. A quadratic equation is derived to find the distance $x$ from the corner of the rectangle to the intersection with the circular arc, leading to a specific formula for $x$. Additionally, the area reduction caused by replacing square corners with quarter circles is noted, resulting in a total area adjustment from $lw$ to $lw - \frac{\pi}{4}r^2$. The discussion emphasizes the mathematical relationships and area calculations involved in this geometric transformation.
Opalg
Gold Member
MHB
Messages
2,778
Reaction score
13
Someone has asked for a fuller explanation of a reply that I gave to this thread on another site eleven years ago.

The question concerns a rectangle (dimensions $l\times w$) whose corners have been replaced by quadrants of a circle of radius $r$. This diagram shows an enlargement of one corner of the rectangle.
[TIKZ]\fill [red!20!white] (0,0) -- (0,-4.5) -- (4,-4.5) -- cycle ;
\draw (0,-6) |- (6,0) ;
\draw (-1,-6) -| (6,1) ;
\draw (0,-6) arc (-90:0:6) ;
\draw (-1,-0.75) -- (6,-6) ;
\draw (5,-5) node{$x$} ;
\draw (3,-6.2) node{$r$} ;
\draw (6.2,-3) node{$r$} ;
\draw (2.3,-2.2) node{$r$} ;
\draw (5.4,-5.8) node{$\theta$} ;
\draw [dashed] (0,-4.5) -- (6,-4.5) ;
\draw [dashed] (4,0) -- (4,-6) ;
\draw [dashed] (0,0) -- (4,-4.5) ;[/TIKZ]
If the diagonal makes an angle $\theta$ with the base of the rectangle then $\tan\theta = \dfrac wl$. So $\cos\theta = \dfrac l{\sqrt{l^2+w^2}}$ and $\sin\theta = \dfrac w{\sqrt{l^2+w^2}}$.
Apply Pythagoras to the coloured triangle to get $$ (r- x\sin\theta)^2 + (r - x\cos\theta)^2 = r^2,$$ $$x^2 - 2rx(\sin\theta + \cos\theta) + r^2 = 0.$$ The solutions to that quadratic equation for $x$ are $$x = r(\sin\theta + \cos\theta) \pm\sqrt{r^2(\sin\theta+\cos\theta)^2 - r^2} = r\bigl(\sin\theta + \cos\theta\pm\sqrt{2\sin\theta\cos\theta}\bigr).$$ We want the smaller solution (the larger one would be where the diagonal meets the other side of the circle), so $$x = r\bigl(\sin\theta + \cos\theta - \sqrt{2\sin\theta\cos\theta}\bigr) = \dfrac{r\bigl(w+l-\sqrt{2lw}\bigr)}{\sqrt{l^2+w^2}}.$$
 
Mathematics news on Phys.org
I am not quite sure of what you are looking for, but: Take any corner of the rectangle. Assume that l>2r and w>2r. Place a square with side r in each corner. When you replace the square with a quarter circle, you reduce the area from r2 to π/4*r2. Thus the total area is reduced from l*w to l*w-πr2.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top