• #1

benorin

Homework Helper
Insights Author
1,435
186
In calculus classes when you are asked to evaluate a trig function at a specific angle, it’s 99.9% of the time at one of the so-called special angles we use in our chart. Since you are likely to have learned degrees first I’ll include degree angles in the first chart, but after that, it’s going to be radian only.
Begin by setting up the table on scratch paper as follows:
$$\begin{array}{ l| |c|c|c|c|c } \theta & 0 = 0º & \tfrac{\pi}{6} = 30º & \tfrac{\pi}{4}=45º & \tfrac{\pi}{3}=60º & \tfrac{\pi}{2}=90º \\ \hline\hline \sin\theta &   &   &  &   &    \\ \hline \cos\theta &   &    &    &    &    \\ \hline \tan\theta &    &    &    &   &    \\ \hline \end{array} $$
Then remember ##\sin\theta## starts at zero, fill in the pattern
$$\begin{array}{ l| |c|c|c|c|c } \theta & 0 & \tfrac{\pi}{6} & \tfrac{\pi}{4} & \tfrac{\pi}{3} & \tfrac{\pi}{2} \\ \hline\hline\sin\theta & \tfrac{\sqrt{0}}{2} & \tfrac{\sqrt{1}}{2} & \tfrac{\sqrt{2}}{2} & \tfrac{\sqrt{3}}{2} & \tfrac{\sqrt{4}}{2} \\...

Continue reading...
 
Last edited by a moderator:
  • Like
Likes yucheng, sysprog, Wrichik Basu and 4 others

Answers and Replies

  • #1
I think I'll make this compulsory reading for my Maths students!
 
  • Like
  • Informative
Likes symbolipoint, benorin and Greg Bernhardt

Answers and Replies

  • #3
In our junior classes, we learned it in a similar way:
##\theta~\rightarrow##​
0° = 0​
30° = ##\dfrac{\pi}{6}##​
45° = ##\dfrac{\pi}{4}##​
60° = ##\dfrac{\pi}{3}##​
90° = ##\dfrac{\pi}{2}##​
##\sin \theta##​
##\sqrt{\dfrac{0}{4}}##​
##\sqrt{\dfrac{1}{4}}##​
##\sqrt{\dfrac{2}{4}}##​
##\sqrt{\dfrac{3}{4}}##​
##\sqrt{\dfrac{4}{4}}##​
##\cos \theta##​
##\sqrt{\dfrac{4}{4}}##​
##\sqrt{\dfrac{3}{4}}##​
##\sqrt{\dfrac{2}{4}}##​
##\sqrt{\dfrac{1}{4}}##​
##\sqrt{\dfrac{0}{4}}##​
##\tan \theta##​
##\sqrt{\dfrac{0}{4 - 0}}##​
##\sqrt{\dfrac{1}{4 - 1}}##​
##\sqrt{\dfrac{2}{4 - 2}}##​
##\sqrt{\dfrac{3}{4 - 3}}##​
##\sqrt{\dfrac{4}{4 - 4}}##​
 
Last edited:
  • Like
Likes bublik_c_makom and benorin
  • #4
"Trick"? The very basics of triangle Geometry and the Pythagorean Theorem, and The UNIT CIRCLE.

Easily enough done, drawing a Unit Circle and judging Sines and Cosines, and whichever other of the functions to derive what you need. Degree measures 30, 45, 60, 0, and 90, and 180 are the easy ones and are commonly used "Reference" angles.
 

Suggested for: A Trick to Memorizing Trig Special Angle Values Table

Replies
10
Views
445
Replies
5
Views
867
Replies
51
Views
1K
Replies
3
Views
403
Replies
18
Views
1K
Replies
5
Views
464
Replies
5
Views
442
Replies
19
Views
828
Replies
2
Views
384
Back
Top