Summary: Meaning of each member being a unit vector, and how the products of each tensor can be averaged.
Hello!
I am struggling with understanding the meaning of "each member is a unit vector":
I can see that N would represent the number of samples, and the pointy bracket represents an...
I have a matrix equation (left side) that needs to be formatted into another form (right side). I've simplified the left side as much as I could but can't seem to get it to the match the right side. I am unsure if my matrix algebra skills are lacking or if I somehow messed up the starting...
Okay so I found the eigenvalues to be ##\lambda = 0,-1,2## with corresponding eigenvectors ##v =
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix},
\begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix},
\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}
##.
Not sure what to do next. Thanks!!!
I have a 4D array of dimension ##100\text{x}100\text{x}3\text{x}3##. I am working with `Python Numpy. This 4D array is used since I want to manipulate 2D array of dimensions ##100\text{x}100## for the following equation (it allows to compute the ##(i,j)## element ##F_{ij}## of Fisher matrix) ...
I started and successfully showed that the expectation of X_1 and X_2 are zero. However the expectation value of X1^2 and X2^2 which I am getting is <X1^2> = 0.25 + \alpha^2 and <X2^2> = 0.25.
How do I derive the given equations?
A theorem from Axler's Linear Algebra Done Right says that if 𝑇 is a linear operator on a complex finite dimensional vector space 𝑉, then there exists a basis 𝐵 for 𝑉 such that the matrix of 𝑇 with respect to the basis 𝐵 is upper triangular.
In the proof, he defines U=range(T-𝜆I) (as we have...
Let a 3 × 3 matrix A be such that for any vector of a column v ∈ R3 the vectors Av and v are orthogonal. Prove that At + A = 0, where At is the transposed matrix.
I need help to know if I'm on the right track:
Prove/Disprove the following:
Let u ∈ V . If (u, v) = 0 for every v ∈ V such that v ≠ u, then u = 0.
(V is a vector-space)
I think I need to disprove by using v = 0, however I'm not sure.
Summary: I need to Identify my linear model matrix using least squares . The aim is to approach an overdetermined system Matrix [A] by knowing pairs of [x] and [y] input data in the complex space.
I need to do a linear model identification using least squared method.
My model to identify is a...
1. Homework Statement
Problem given to me for an assignment in a math course. Haven't learnt about roots of unity at all though. Finding this problem super tricky any help would be appreciated. Screenshot of problem below.
2. Homework Equations
Unsure of relevant equations
3. The...
1. Homework Statement
Let ##T:V \rightarrow W## be an ismorphism. Let ##\{v_1, ..., v_k\}## be a subset of V. Prove that ##\{v_1, ..., v_k\}## is a linearly independent set if and only if ##\{T(v_1), ... , T(v_2)\}## is a linearly independent set.
2. Homework Equations
3. The Attempt at a...
Hello everybody!
I was studying the Glashow-Weinberg-Salam theory and I have found this relation:
$$e^{\frac{i\beta}{2}}\,e^{\frac{i\alpha_3}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}}\, \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ v \\ \end{pmatrix} =...
So I've taken this Linear Algebra class as an elective. So there's stuff that is so obvious and logically/analytically easy to prove but I honestly don't understand how to prove them using the standard way. So what should I do about this ?
And I really like linear algebra so I don't want to mess...
I'm reading about the LU decomposition on this page and cannot understand one of the final steps in the proof to the following:
----------------
Let ##A## be a ##K\times K## matrix. Then, there exists a permutation matrix ##P## such that ##PA## has an LU decomposition: $$PA=LU$$ where ##L## is a...
1. Homework Statement
Show that the only subspaces of ##V = R^2## are the zero subspace, ##R^2## itself,
and the lines through the origin. (Hint: Show that if W is a subspace of
##R^2## that contains two nonzero vectors lying along different lines through
the origin, then W must be all of...
1. Homework Statement
Let W be a subspace of a vector space V, let y be in V and define the set y + W = \{x \in V | x = y +w, \text{for some } w \in W\} Show that y + W is a subspace of V iff y \in W.
2. Homework Equations
3. The Attempt at a Solution
Let W be a subspace of a vector space...
I was wondering how to measure the first or even the second qubit in a quantum computing system after for example a Hadamard Gate is applied to the system of these qubits: A|00>+B|01>+C|10>+D|11>?
A mathematical and intuitive explanation would be nice, I am a undergraduate sophomore student...
1. Homework Statement
Given the following quadric surfaces:
1. Classify the quadric surface.
2. Find its reduced equation.
3. Find the equation of the axes on which it takes its reduced form.
2. Homework Equations
The quadric surfaces are:
(1) ##3x^2 + 3y^2 + 3z^2 - 2xz +...
Hello, I've been working through some Digital Signal Processing stuff by myself online, and I saw a system that I wanted to write down as a Linear Algebra Equation. It's a simple delay feedback loop, looks like this:
The (+) is an adder that adds 2 signals together, so the signal from x[n]...
Hey, I am currently reading over the linear algebra section of the "introduction to quantum mechanics" by Griffiths, in the Inner product he notes: "The inner product of two vector can be written very neatly in terms of their components: <a|B>=a1* B1 + a2* B ... " He also took upon the...
1. Homework Statement
Consider the real-vector space of polynomials (i.e. real coefficients) ##f(x)## of at most degree ##3##, let's call that space ##X##. And consider the real-vector space of polynomials (i.e. real coefficients) of at most degree ##2##, call that ##Y##. And consider the...
1. Homework Statement
In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list.
It's quite long :nb), hope you guys read through it. Thanks! :smile:
2. Homework Equations
N/A
3. The Attempt at a...
1. Homework Statement
Let ##V = \mathbb{R}^4##. Consider the following subspaces:
##V_1 = \{(x,y,z,t)\ : x = y = z\}, V_2=[(2,1,1,1)], V_3 =[(2,2,1,1)]##
And let ##V = M_n(\mathbb{k})##. Consider the following subspaces:
##V_1 = \{(a_{ij}) \in V : a_{ij} = 0,\forall i < j\}##
##V_2 =...
(a) and (b) are fairly traditional, but I have trouble understanding the phrasing of (c). What makes the infinite dimensionality in (c) different from (a) and (b)?
1. Homework Statement
The SO(3) representation can be represented as ##3\times 3## matrices with the following form:
$$J_1=\frac{1}{\sqrt{2}}\left(\matrix{0&1&0\\1&0&1\\ 0&1&0}\right) \ \ ; \ \ J_2=\frac{1}{\sqrt{2}}\left(\matrix{0&-i&0\\i&0&-i\\ 0&i&0}\right) \ \ ; \ \...
I have a question about HHL algorithm https://arxiv.org/pdf/0811.3171.pdf for solving linear equations of the form:
A x = b
Where A, x and b are matrices
Take for example
4x1 + 2x2 =14
5x1 + 3x2 = 19
HHL apply the momentum operator eiAτto/T on the state, do a Fourier Transform on |b> and...
I'm a physics student who has the option to take some advanced math courses (Real analysis through Rudin and beyond, functional analysis if I have time, as well as algebra through Artin). I'm only just going into my second year this term, and will either be retaking linear algebra 2, or taking...
Given two probability distributions ##p \in R^{m}_{+}## and ##q \in R^{n}_{+}## (the "+" subscript simply indicates non-negative elements), this paper (page 4) writes down the tensor product as
$$p \otimes q := \begin{pmatrix}
p(1)q(1) \\
p(1)q(2) \\
\vdots \\
p(1)q(n) \\
\vdots \\...