MHB Question about Bayesian Inference, Posterior Distribution

thehairygorilla
Messages
2
Reaction score
0
I have a posterior probability of $$p_i $$which is based on a Beta prior and some data from a binomial distribution:

I have another procedure:

$P(E)=\prod_{i \in I} p_i^{k_i}(1-p_i)^{1-k_i}$

which gives me the probability of a specific event of successes and failures for the set of $I$ in a model. Given the posterior distribution for $p_i$, how do I find $$P(E)$$?
 
Physics news on Phys.org
thehairygorilla said:
I have a posterior probability of $$p_i $$which is based on a Beta prior and some data from a binomial distribution:

I have another procedure:

$P(E)=\prod_{i \in I} p_i^{k_i}(1-p_i)^{1-k_i}$

which gives me the probability of a specific event of successes and failures for the set of $I$ in a model. Given the posterior distribution for $p_i$, how do I find $$P(E)$$?

Hi thehairygorilla, welcome to MHB!

The event $E$ consists of a combination of $k_i$ for $i\in I$.
To find the probability $P(E)$ we would fill in those $k_i$ and the given $p_i$ in the formula, wouldn't we?
 
I like Serena said:
Hi thehairygorilla, welcome to MHB!

The event $E$ consists of a combination of $k_i$ for $i\in I$.
To find the probability $P(E)$ we would fill in those $k_i$ and the given $p_i$ in the formula, wouldn't we?

So not really. $p_i$ is a random variable. Better notation would be $P(E|p_1,...,...p_i,...,p_{|I|})=\prod_{i \in I} p_i^{k_i}(1-p_i)^{1-k_i}$ and I would be trying to find the marginal probability $P(E)$. Given the $p_i$s, $P(E|p_1,...,...p_i,...,p_{|I|})$ would be in terms of those random variables.
 
Last edited:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top