- #1
Frank Einstein
- 163
- 1
- TL;DR Summary
- I am trying to understand an example which doesn't seem to make sense
Hello everyone. I am currently reading the book Probability statistics and random processes for electrical engineering by Alberto Leon Garcia. In page 540, one can find example 9.47, in which is shown how a stationary random process doesn't have to be ergodic by defining a random variable A of zero mean and variance one. Then, a stochastic process is defined as X(t)=A, therefore, mX(t)= E[X(t)]=E[A]=0. However, the integration over a time interval returns
<X(t)>T=∫-TT A dt=A
Which shows that a stationary process isn't necessary ergodic. However, in the very next page the book states that <X(t)>T is an unbiased estimator of m. Am I understanding everything wrong or these two statements contradict each other?
Any answer is appreciated.
Regards.
<X(t)>T=∫-TT A dt=A
Which shows that a stationary process isn't necessary ergodic. However, in the very next page the book states that <X(t)>T is an unbiased estimator of m. Am I understanding everything wrong or these two statements contradict each other?
Any answer is appreciated.
Regards.