My book is going through a proof on exact differential forms and the test to see if they're exact, and I'm lost on one part of it.(adsbygoogle = window.adsbygoogle || []).push({});

It says:

If $$M(x,y)dx + N(x,y)dy = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy$$ then the calculus theorem concerning the equality of continuous mixed partial derivatives $$\frac{\partial }{\partial y}\frac{\partial F}{\partial x}=\frac{\partial }{\partial x}\frac{\partial F}{\partial y}$$ would dictate a "compatibility condition" on the functions ##M## and ##N##: $$\frac{\partial}{\partial y}M(x,y)=\frac{\partial}{\partial x}N(x,y)$$

What does this mean? What is the "calculus theorem concerning the equality of continuous mixed partial derivatives" it talks about?

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Question About Exact Differential Form

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Question Exact Differential | Date |
---|---|

I Question about second order linear differential equations | Aug 21, 2017 |

B Simple double integration of square wave question | Aug 16, 2017 |

I Question regarding integration of an equation | Jul 4, 2017 |

A Some questions regarding the ADI Method | Jun 23, 2017 |

Silly question about exact equations. | Jun 28, 2013 |

**Physics Forums - The Fusion of Science and Community**