MHB Question about problem statement (marginal distribution)

  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Distribution
kalish1
Messages
79
Reaction score
0
I am doing some problems from a practice final and would like to know if the following problem has mistakes in the way it is written. We are supposed to apply a corollary that doesn't seem to have any relevance in this context. It is throwing me off.

**Problem statement:** Suppose that $X$ ~ $N(\mu,\sigma^2)$ and $Y$ ~ $N(\mu,\sigma^2)$ and they are independent. Let $U=X+Y$ and $V=X+Y$. Use the following corollary to find the marginal distributions of $X$ and $Y$.

**Corollary:** Let $X_1, \ldots, X_n$ be mutually independent random variables with $X_i$ ~ $n(\mu_i, \sigma_i^2)$. Let $a_1, \ldots, a_n$ and $b_1, \ldots, b_n$ be fixed constants Then

$Z=\sum_{i=1}^n(a_iX_i + b_i)$ ~ $n(\sum_{i=1}^n(a_i\mu_i + b_i),\sum_{i=1}^na_i^2\sigma_i^2)$.

Also, aren't the marginal distributions of $X$ and $Y$ just $X$ and $Y$ themselves, because they are independent of each other??

Any help would be greatly appreciated. My final is tomorrow and I'm studying as hard as I can.
 
Physics news on Phys.org
I would guess that $$V= X - Y$$ and that you should find the find the marginal distributions of U and [FONT=MathJax_Math]V.

You should use the Corollary to find their distribution, then try and apply the marginal distribution stuff.

But I could be wrong, good luck!
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top