Question about the Pauli equation

  • Context: Undergrad 
  • Thread starter Thread starter Airton Rampim
  • Start date Start date
  • Tags Tags
    Pauli
Click For Summary
SUMMARY

The discussion centers on the Pauli equation and the expression (2.2.15) from MIT's Quantum Physics III course. Participants clarify that the expression for the vector product of operators, specifically $$\pi_i \pi_j = \frac{1}{2}\left(\left[\pi_i, \pi_j\right] + \left\{\pi_i, \pi_j\right\}\right)$$, simplifies due to the cancellation of the anticommutator by the Levi-Civita tensor $$\epsilon_{ijk}$$. The commutator is computed using the position representation, where $$\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}$$. The final conclusion confirms that the relationship holds for any operator, including the angular momentum operator $$\vec{L}$$.

PREREQUISITES
  • Understanding of quantum mechanics concepts, specifically the Pauli equation.
  • Familiarity with commutators and anticommutators in quantum mechanics.
  • Knowledge of vector calculus and Levi-Civita tensor properties.
  • Experience with operator representations in quantum mechanics, particularly position representation.
NEXT STEPS
  • Study the derivation and implications of the Pauli equation in quantum mechanics.
  • Learn about the properties and applications of the Levi-Civita tensor in physics.
  • Explore the role of commutators and anticommutators in quantum mechanics.
  • Investigate the angular momentum operator $$\vec{L}$$ and its significance in quantum systems.
USEFUL FOR

Students and researchers in quantum mechanics, physicists working with operator algebra, and anyone studying the Pauli equation and its applications in quantum theory.

Airton Rampim
Messages
6
Reaction score
1
I have a question about this note: https://ocw.mit.edu/courses/physics...i-spring-2018/lecture-notes/MIT8_06S18ch2.pdf
I don't understand the expression (2.2.15). The complete relation would be

$$ \pi_i \pi_j = \frac{1}{2}\left(\left[\pi_i, \pi_j\right] + \left\{\pi_i, \pi_j\right\}\right), $$
where
$$ \vec{\pi} = \vec{p} - \frac{q}{c}\vec{A} $$
in gaussian unit. How can I prove that {πi, πj} = 0?
 
Physics news on Phys.org
In (2.2.15) you don't need the anticommutator, because the ##\epsilon_{ijk}## cancels this contribution identically. The commutator is most easily calculated in the position representation, where ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}## or ##\hat{p}_i=-\mathrm{i} \partial_i##.
 
  • Like
Likes   Reactions: Airton Rampim
vanhees71 said:
In (2.2.15) you don't need the anticommutator, because the ##\epsilon_{ijk}## cancels this contribution identically. The commutator is most easily calculated in the position representation, where ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}## or ##\hat{p}_i=-\mathrm{i} \partial_i##.

Sorry, but I can't see how the Levi-Civita tensor cancels the anticommutator. I calculated the commutator using the position representation, as you mentioned. What I can't figure out is how I relate the commutator with the vector product ##\vec{\pi}\times\vec{\pi}##.
 
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.
 
  • Like
Likes   Reactions: Airton Rampim
vanhees71 said:
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.

Hmmm, so this is valid for any operator, right? Now I got it. I did in this way before, but I thought that was wrong, because it wasn't working with the ##\vec{L}## operator. But I forgot an extra ##\epsilon_{ijk}## that appears in ##\left[L_{i},L_{j}\right]##. So this gives

$$ {\displaystyle \left(\vec{L}\times\vec{L}\right)_{k}=\sum_{i,j}\frac{\epsilon_{ijk}}{2}\underbrace{\left[L_{i},L_{j}\right]}_{{\displaystyle i\hbar\sum_{k}\epsilon_{ijk}L_{k}}}=\frac{i\hbar}{2}\left(\sum_{i,j}\epsilon_{ijk}\epsilon_{ij1}L_{1}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij2}L_{2}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij3}L_{3}\right)} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}\epsilon_{231}+\epsilon_{32k}\epsilon_{321}\right)L_{1}+\left(\epsilon_{13k}\epsilon_{132}+\epsilon_{31k}\epsilon_{312}\right)L_{2}+\left(\epsilon_{12k}\epsilon_{123}+\epsilon_{21k}\epsilon_{213}\right)L_{3}\right]} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}-\epsilon_{32k}\right)L_{1}+\left(\epsilon_{31k}-\epsilon_{13k}\right)L_{2}+\left(\epsilon_{12k}-\epsilon_{21k}\right)L_{3}\right]} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[2\epsilon_{23k}L_{1}+2\epsilon_{31k}L_{2}+2\epsilon_{12k}L_{3}\right]} $$

$$ {\displaystyle =i\hbar\epsilon_{k23}L_{1}+i\hbar\epsilon_{1k3}L_{2}+i\hbar\epsilon_{12k}L_{3}} $$

$$ {\displaystyle =i\hbar L_{k}}, $$

which is the correct answer. It makes sense to me now. Thank you very much for your help :)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K