Maxwell's equations in the presence of matter -- Derivation

  • #1
LeoJakob
21
1
I want to calculate ##\int \vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}}## with macroscopic polarization ##\vec{P}\left(\overrightarrow{r^{\prime}}\right)## because I want to solve:

$$\Delta \Phi(\vec{r})=\Delta \left( \frac{1}{4 \pi \varepsilon_{0}} \int(\frac{\varrho\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}+\vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}) d^{3} \overrightarrow{r^{\prime}}\right)$$

There is a note that one can use the fact that: $$\overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot\left(\vec{P}\left(\overrightarrow{r^{\prime}}\right) \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}\right) = 0$$

Why is this true? Does this have anything to do with the maxwell equations?

If I use the hint, I can do the following transformations:
$$
0=\int \overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot\left(\vec{P}\left(\overrightarrow{r^{\prime}}\right) \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}\right) d^{3} \overrightarrow{r^{\prime}} =\int \vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}}+\int \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot \vec{P}\left(\overrightarrow{r^{\prime}}\right) d^{3} \overrightarrow{r^{\prime}}\\

\Rightarrow \int \vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}}=\int \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot \vec{P}\left(\overrightarrow{r^{\prime}}\right) d^{3} \overrightarrow{r^{\prime}}
$$
 
Physics news on Phys.org
  • #2
Apply the divergence theorem to a surface outside the material where the polarization exists.
 
  • Like
Likes LeoJakob

Similar threads

Replies
2
Views
303
Replies
4
Views
444
  • Electromagnetism
Replies
14
Views
1K
Replies
1
Views
381
Replies
2
Views
616
  • Electromagnetism
Replies
2
Views
947
  • Introductory Physics Homework Help
Replies
17
Views
404
  • Advanced Physics Homework Help
Replies
1
Views
428
  • Advanced Physics Homework Help
Replies
3
Views
399
  • Electromagnetism
Replies
1
Views
771
Back
Top