A Question about the Poincaré conjecture

donglepuss
Messages
17
Reaction score
4
TL;DR Summary
Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?
Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?
 
Mathematics news on Phys.org
donglepuss said:
TL;DR Summary: Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?

Does Perelman’s proof of the Poincaré conjecture imply that the universe is the surface of a 3 sphere?
No.
 
  • Like
Likes Office_Shredder
How can a methematical proof tell us anything about the physical universe?
 
  • Like
Likes Hornbein and dextercioby
You haven't provided your reasoning for why you would be curious about this, so I'm left to assume that it's because from our local observations the universe appears to be a simply connected 3-manifold. There are two main reasons this doesn't imply the universe is the 3-sphere:

1) The Poincare conjecture takes as its premise closed simply connected 3-manifolds. These are compact manifolds without boundary. There are an abundance of simply connected 3-manifolds that aren't homeomorphic to the 3-sphere, but they are also non-compact (3-dimensional Euclidean space) or have non-empty boundary (the 3-ball). It is possible that the universe is not a closed manifold.

2) Our observations imply the universe is locally simply connected (i.e. simply connected within some neighborhood of a point). Every manifold is locally simply connected because every manifold is locally Euclidean. However, not every manifold is simply connected.

Hope this helped.
 
  • Like
Likes dextercioby and PeroK
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top