Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I am reading Baby Rudin on my own to get prepared for the analysis class that I will be taking in the fall. I got up to this theorem, and I was wondering if someone can clarify me the proof of this (i.e. Thm 1.11, thefirsttheorem).

1.11 Theorem:Suppose S is an ordered set with the lub property, B [tex]\subset[/tex] S, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then, [tex]\alpha[/tex] = sup L exists, and [tex]\alpha[/tex] = inf B. In particular, inf B exists in S.

(The Part of) Proof:Since B is bounded below, L is not empty. Since L consists of exactly those y [tex]\in[/tex] S, which satisfy the inequality y [tex]\leq[/tex] x for every x [tex]\in[/tex] B, we see thatevery x [tex]\in[/tex] B is an upper bound of L.Thus L is bounded above. Our hypothesis is abound S implies therefore that L has a supremum in S; call it [tex]\alpha.[/tex]

The part I underlined is where I want to be clarified. I understand that S has an lub property, and that implies that if E [tex]\subset[/tex] S, E is not empty, and E is bounded above, then sup E exists in S (EDIT: Originally it said "... then sup E exists in E, until rasmhop pointed out the misprint.). While I understand why L is bounded above, I am not clear on how this proves the existence of sup L. My guess is that we're concerned about the set K [tex]\subset[/tex] S [tex]\cap[/tex] L, and by definition sup K exists, and thus sup L exists, but my guess could be wrong.

Please let me know if you can help me out. Notice that I only put the part of the proof here since I believe the rest is irrelevant, but please let me know if you want to read the whole proof--I can always edit it later.

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question from a theorem in Baby Rudin (Re: Least-Upper-Bound Property)

**Physics Forums | Science Articles, Homework Help, Discussion**