Question in Proof of second order condition with linear constraints

Click For Summary
The discussion focuses on the proof of sign definiteness of a quadratic form with linear constraints, specifically examining the bordered Hessian's submatrices. Questions arise regarding the formation of the quadratic forms E and H, particularly how they fit into the overall proof structure. The proof indicates that the conditions for positive and negative definiteness are derived from the determinant relationships involving B1 and E. Clarification is sought on the derivation of the expression involving (-1)^(j−k) and its role in establishing the sign definiteness of Q. Ultimately, the manipulation of the bordered Hessian's basis is crucial for understanding the conditions for negative semi-definiteness in this context.
holemole
Messages
10
Reaction score
0
http://www.math.northwestern.edu/~clark/285/2006-07/handouts/lin-constraint.pdf


It's actually proof of finding sign definiteness of quadratic form with linear constraints with sign of submatrices of bordered hessian.

The proof is from page 2~page 3. I have 2 questions:

1. From about 6th line of the proof it mentions "E" being a quadratic form of A, hessian of our objective function. Its specific form is mentioned in the paper, but why is it formed that way? Is it just to make a quadratic form that will fit in another quadratic form presented later in the proof? I have similar question with quadratic form of H, the bordered hessian.

2. The last 6lines of the proof.

The two conditions each representing positive and negative definite case, as far as I understand, follows from (-1)^k det(B1)^2 det(E). so in the negative definite case where does (-1)^(j−k) et(Hj) = (-1)^(j−2k) det(B1)^2 det(Ej−2k) > 0 come from?
 

Attachments

Physics news on Phys.org
Kind of figured it out by myself now. Reason why the proof states E is because while E is quadratic form of A, Q is again quadratic form of E. Thus sign definiteness of Q can rely on det(E), which is attainable if we follow the proof's manipulation ofchanging the basis of the bordered hessian.

the (-1)^(j-2k) comes from the fact that in order for Q to be negative semi-definite its discriminant(in this case det(E)) needs to have negative-positive-negative...signs for its submatrices. (-1)^(j-2k) allows this, thus multiplied to both sides of the equation.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 21 ·
Replies
21
Views
9K
  • · Replies 6 ·
Replies
6
Views
5K
Replies
5
Views
2K